首先确定你已经成功安装了 cuda!首先确定你已经成功安装了 cuda!首先确定你已经成功安装了 cuda!具体请看深度学习之cuda安装以及环境配置windows-CSDN博客
1.确定你的cuda版本
使用pycharm中的terminal窗口输入 nvcc -V
确定cuda版本后进入pytorch官网 PyTorch
注意: nvidia-smi输出的是最高支持的cuda版本 nvcc -V是你本地安装的版本
2.安装torch
在PyTorch搜索对应的cuda版本和项目要用的torch版本后复制安装命令,建议使用conda安装,conda设置清华园镜像请看 深度学习Anaconda虚拟环境搭建windows-CSDN博客。注意:设置清华园之后使用conda,不要挂外网。
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
将复制的命令输入到pycharm的terminal中,注意是否处于项目所需虚拟环境中,一路回车:
安装完成之后terminal输入命令:
conda list
查看安装的torch包是否为:
若是则证明安装成功,若不是则使用命令卸载之后重装:
conda uninstall pytorch -y
conda uninstall torchaudio -y
conda uninstall torchvision -y
#若使用pip安装同理卸载
pip uninstall pytorch -y
pip uninstall torchaudio -y
pip uninstall torchvision -y
最后新建一个py文件测试:
import torch
print(torch.cuda.is_available())
输出为True证明cuda可用
3.离线安装
离线安装作为一种保底手段,在conda和pip安装都不成功安装gpu版本的pytorch时候使用。
首先,确定你要安装的 cuda版本 和使用的 python版本,进入网站download.pytorch.org/whl/torch_stable.html 搜索对应的版本号后,点击下载对应的torchvison 和 torchaudio版本可在 PyTorch 官网中查看后回到本网站使用同样方法下载。
下载后将压缩包放到项目的根目录下,在terminal中使用pip进行安装,注意,安装命令要在虚拟环境下进行
torch、torchvison 和 torchaudio安装完成后,使用同样的方法测试安装是否成功即可。
安装中有什么问题可以留言,看到后会及时回复。