-
Box(P、R、mAP50、mAP50-95):该指标可帮助我们深入了解模型在检测物体方面的性能:
-
P(精确度):检测物体的精确度,表示有多少检测是正确的。
-
R(召回率):模型识别图像中所有物体实例的能力。
-
mAP50:按 0.50 的交集大于联合(IoU)阈值计算的平均精度。这是仅考虑 "容易 "检测的模型精确度的衡量标准。
-
mAP50-95:在 0.50 至 0.95 之间的不同 IoU 门限下计算得出的平均精度的平均值。它全面反映了模型在不同检测难度下的表现。
-
-
训练输出的png
-
F1 分数曲线 (
F1_curve.png
):该曲线表示不同阈值下的 F1 分数。通过解读这条曲线,可以深入了解模型在不同阈值下假阳性和假阴性之间的平衡。 -
精度-召回曲线 (
PR_curve.png
):对于任何分类问题来说,这条曲线都是不可或缺的可视化工具,它展示了在不同阈值下精确度和召回率之间的权衡。在处理不平衡类时,它显得尤为重要。 -
精度曲线 (
P_curve.png
):不同阈值下精度值的图形表示。该曲线有助于了解精度如何随着阈值的变化而变化。 -
召回曲线 (
R_curve.png
):相应地,该图说明了召回值在不同阈值下的变化情况。 -
混淆矩阵 (
confusion_matrix.png
):混淆矩阵提供了结果的详细视图,展示了每个类别的真阳性、真阴性、假阳性和假阴性的计数。 -
归一化混淆矩阵 (
confusion_matrix_normalized.png
):这种可视化是混淆矩阵的规范化版本。它以比例而非原始计数来表示数据。这种格式更便于比较不同类别的性能。 -
验证批次标签 (
val_batchX_labels.jpg
):这些图像描述了验证数据集中不同批次的基本真实标签。根据数据集,这些图像可以清楚地显示对象及其各自的位置。 -
验证批预测 (
val_batchX_pred.jpg
):与标签图像对比,这些视觉效果显示了YOLOv8 模型对相应批次的预测结果。通过将这些图像与标签图像进行对比,您可以轻松评估模型对物体的检测和分类效果。
-
-
结果解释
-
低 mAP:表示模型可能需要全面改进。
-
低 IoU:模型可能难以准确定位物体。采用不同的边界框方法可能会有所帮助。
-
精度低:模型可能检测到太多不存在的物体。调整置信度阈值可能会减少这种情况。
-
召回率低(recall):模型可能遗漏了真实物体。改进特征提取或使用更多数据可能会有所帮助。
-
F1 分数不平衡:精确度和召回率之间存在差距。
-
针对具体类的 AP:这里的低分可以凸显模型在某些方面的不足。
-
-
案例研究
-
案例 1
-
情况:mAP 和 F1 分数都不理想,但召回率很高,精度却不高。
-
解释:错误检测可能太多。收紧置信度阈值可以减少错误检测,但也可能会略微降低召回率。
-
-
案例 2
-
情况:MAP 和 Recall 可以接受,但 IoU 不足。
-
解释:模型能很好地检测物体,但可能无法精确定位。改进边界框预测可能会有所帮助。
-
-
案例 3
-
情况:有些班级的 AP 比其他班级低得多,即使总的 mAP 还不错。
-
解释:这些类别对模型来说可能更具挑战性。在训练过程中为这些类别使用更多数据或调整类别权重可能会有所帮助。
-
-
YOLOV8评价指标
最新推荐文章于 2025-03-30 16:31:21 发布