机器学习中的基线

在机器学习竞赛或实验中,对应基线的概念通常是“最基本的模型”或者“最简单的方法”,这些方法可能并不复杂,但提供了一个起点用于性能对比。

而与之对应的是“最优”或“最先进”的模型或方法。这些模型通常是在性能或效果上表现得非常好的,可能使用了更复杂的算法、更大的模型或更精细的技术。

在竞赛或实验中,参与者通常尝试超越基线,寻求超越“最基本”的性能水平,向着更接近甚至超越“最优”模型的方向努力。基线和最优模型之间的性能差距,可以帮助研究者或参与者评估自己的模型或方法的表现,并且对于改进模型或方法提供了方向和目标。

举例说明

假设你正在处理一个分类问题,你有一个简单的基线模型和几个更复杂的模型。基线模型可以是一个非常简单的逻辑回归模型,它只使用少量特征并且没有经过复杂的调参。其他更复杂的模型可以包括深度神经网络或梯度提升树等。

现在,让我们考虑一个情景:

  1. 基线模型:逻辑回归

    • 特征选择:只使用数据集中的基本特征。
    • 训练过程:使用默认超参数进行训练,没有进行太多的调参。
    • 衡量性能:在测试集上得到了约70%的准确率。
  2. 更复杂的模型:深度神经网络(神经网络模型)

    • 特征选择:使用了更多、更复杂的特征。
    • 训练过程:经过多次训练、调整超参数和模型结构的优化。
    • 衡量性能:在测试集上得到了约78%的准确率。

在这个例子中,基线模型是简单的逻辑回归,它是对比的起点。更复杂的模型是深度神经网络,它在性能上比基线模型有了一定的提升。

通过对比基线和更复杂模型的性能差异,你可以了解到使用深度神经网络相对于简单的逻辑回归模型的优势。这种对比有助于评估新模型的效果,并帮助你决定是否需要更进一步地改进模型或尝试其他方法。

### 路径规划中的机器学习基线算法 路径规划是一个典型的优化问题,在许多实际应用中都需要找到从起点到终点的最佳路径。对于这种问题,可以采用多种机器学习基线算法来解决。这些算法通常依赖于简单的启发式规则或统计模型,并作为复杂算法的性能基准。 #### 1. 随机游走 (Random Walk) 随机游走是一种非常基本的方法,它通过在每一步随机选择下一个可能的方向来进行路径探索。尽管这种方法效率低下,但它可以用作其他更复杂的路径规划算法的对比基准[^2]。 ```python import random def random_walk(start, grid_size): position = start[:] path = [position[:]] while True: move = random.choice([(0, 1), (0, -1), (1, 0), (-1, 0)]) # 上下左右移动 new_position = [position[0] + move[0], position[1] + move[1]] if 0 <= new_position[0] < grid_size and 0 <= new_position[1] < grid_size: position = new_position path.append(position[:]) if tuple(position) == goal: # 如果到达目标位置,则停止 break return path ``` #### 2. 最近邻法 (Nearest Neighbor Algorithm) 最近邻法是一种简单而直观的策略,适用于离散空间中的路径规划问题。该方法总是优先选择当前节点最接近的目标节点作为下一步方向。虽然这种方法容易陷入局部最优解,但在某些情况下仍然具有一定的实用性[^3]。 ```python from scipy.spatial import distance def nearest_neighbor(start, points): current_point = start unvisited_points = set(points) tour = [current_point] while unvisited_points: next_point = min(unvisited_points, key=lambda p: distance.euclidean(current_point, p)) tour.append(next_point) unvisited_points.remove(next_point) current_point = next_point return tour ``` #### 3. A* 搜索算法 (A* Search Algorithm) A* 是一种广泛使用的启发式搜索算法,能够有效地寻找两点之间的最短路径。它的核心思想是在扩展过程中综合考虑已知代价和估计剩余代价两部分信息。由于其良好的理论性质以及较高的求解质量,常被选作路径规划任务的基础标准之一[^1]。 ```python import heapq def a_star_search(graph, start, goal): frontier = [] heapq.heappush(frontier, (0, start)) came_from = {} cost_so_far = {start: 0} while frontier: _, current = heapq.heappop(frontier) if current == goal: break for neighbor in graph.neighbors[current]: new_cost = cost_so_far[current] + graph.cost(current, neighbor) if neighbor not in cost_so_far or new_cost < cost_so_far[neighbor]: cost_so_far[neighbor] = new_cost priority = new_cost + heuristic(goal, neighbor) heapq.heappush(frontier, (priority, neighbor)) came_from[neighbor] = current return reconstruct_path(came_from, start, goal) ``` 为了确保实验结果的一致性和可重复性,在上述任何一种算法的实际部署前都应固定随机数种子[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值