无迹变换UT

无迹变换(Unscented Transform, UT)是一种数学工具,用于处理非线性系统状态估计中的非线性函数的传播问题。它在无迹卡尔曼滤波(UKF)中起到关键作用,允许高度非线性的系统状态通过非线性函数准确地传播,同时保持了状态的均值和协方差的准确性。无迹变换的基本思想是通过精心选择的一组点(称为Sigma点)来近似描述原始状态的概率分布,然后将这些点通过非线性函数映射到新的状态空间,通过映射后的点来近似新状态的概率分布。

Sigma点的选择

无迹变换首先需要从原始状态的高斯分布中选择一组代表性的点(Sigma点)。这些点被选中是为了精确捕获原始分布的均值和协方差。对于一个n维的状态向量 x x x,其均值为 x ˉ \bar{x} xˉ,协方差为 P x P_x Px,Sigma点的选择如下:

  1. 第一个Sigma点为状态向量的均值: χ 0 = x ˉ \chi_0 = \bar{x} χ0=xˉ
  2. 接下来的 2 n 2n 2n个点分别沿着每个维度的正负方向选取:对于 i = 1 , . . . , n i=1,...,n i=1,...,n
    • χ i = x ˉ + ( n + λ ) P x i \chi_i = \bar{x} + \sqrt{(n+\lambda)P_x}_i χi=xˉ+(n+λ)Px i
    • χ i + n = x ˉ − ( n + λ ) P x i \chi_{i+n} = \bar{x} - \sqrt{(n+\lambda)P_x}_i χi+n=xˉ(n+λ)Px i

其中, P x \sqrt{P_x} Px P x P_x Px的平方根矩阵(可以通过Cholesky分解得到), λ \lambda λ是一个缩放因子,用于调整Sigma点的分布范围,以控制采样点覆盖概率分布的密度。 λ \lambda λ通常定义为 λ = α 2 ( n + κ ) − n \lambda = \alpha^2(n+\kappa) - n λ=α2(n+κ)n,其中 α \alpha α是确定Sigma点分布范围的参数(一般取很小的值), κ \kappa κ是一个次要缩放参数。

Sigma点的传播

选择Sigma点后,将这些点通过非线性函数 y = f ( x ) y = f(x) y=f(x)传播到新的状态空间:

Y i = f ( χ i ) , for  i = 0 , . . . , 2 n Y_i = f(\chi_i), \quad \text{for } i=0,...,2n Yi=f(χi),for i=0,...,2n

均值和协方差的更新

经过非线性函数传播后,利用这些传播后的Sigma点 Y i Y_i Yi,可以计算新状态的预测均值 y ˉ \bar{y} yˉ和协方差 P y P_y Py

  • 预测均值: y ˉ ≈ ∑ i = 0 2 n W i m Y i \bar{y} \approx \sum_{i=0}^{2n} W_i^m Y_i yˉi=02nWimYi
  • 预测协方差: P y ≈ ∑ i = 0 2 n W i c ( Y i − y ˉ ) ( Y i − y ˉ ) T P_y \approx \sum_{i=0}^{2n} W_i^c (Y_i - \bar{y})(Y_i - \bar{y})^T Pyi=02nWic(Yiyˉ)(Yiyˉ)T

其中, W i m W_i^m Wim W i c W_i^c Wic是均值和协方差的权重,分别用于Sigma点在计算预测均值和预测协方差时的贡献。这些权重根据Sigma点的选择参数(如 λ \lambda λ α \alpha α κ \kappa κ)进行计算。

无迹变换的优势

无迹变换的主要优势在于其能够在不需要线性化的情况下,准确地处理非线性函数对状态的影响。相比扩展卡尔曼滤波(EKF)的线性化方法,无迹变换能够提供更精确的非线性系统状态估计,尤其是当系统表现出强烈的非线性时。此外,无迹变换避免了计算雅可比矩阵或海森矩阵的需要,简化了实现过程。

无迹变换是无迹卡尔曼滤波(UKF)的核心,通过有效地处理非线性系统的状态估计问题,UKF在许多复杂系统的建模和预测中都得到了广泛应用。

通俗解释

想象一下,你手里有一张地图,这张地图上标记了你家到学校的路线。如果这条路线是直的,你可以很容易地预测从家到学校需要多长时间。这就像是线性问题,直接测量就能得到答案,卡尔曼滤波就是处理这种直线问题的好方法。

但现实中的路线往往不是直的。比如,你的路线可能会绕过一个湖,穿过一个公园,这样的路线就变成了“非线性”的,也就是说,它不是一条直线。如果你还用直线的方法来预测时间,那就不准确了。这时候,扩展卡尔曼滤波(EKF)尝试通过“拉直”这条曲线来解决问题,但很多时候这种方法会失真。

无迹变换(UT)采用了一种不同的方法。想象你手里有一些彩色的小球,你把这些小球放在你的路线上,它们代表了可能的位置。然后,你观察这些小球通过这条曲线路线(非线性变化)后的新位置。通过观察这些小球的最终分布,你可以得到一个很好的预测:从家到学校的真实路径会是怎样的,以及需要多长时间。

用数学语言说,无迹变换通过精心选择一系列点(这些点称为“sigma点”),这些点大致代表了整个系统可能的状态。然后,它将这些点通过系统的非线性方程直接传递,而不是尝试对方程进行简化或线性化。通过观察这些点传递后的变化,UT能够对系统状态的变化给出一个非常精确的预测。这个过程好比通过直接观察这些彩色小球通过真实世界的路径变化,来更准确地理解整个系统的行为。

简而言之,无迹变换就是一种通过直接模拟和观察系统可能状态的变化,来准确预测非线性系统行为的方法,而不是试图简化系统的数学描述。这使得它在处理复杂的非线性问题时比传统的线性化方法更加精确。

  • 27
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值