什么是对比学习?
对比学习(Contrastive Learning)是一种自监督学习方法,通过让模型学习区分相似和不相似的样本,构建有意义的特征表示。它的核心思想是:
- 相似样本的特征应尽可能接近。
- 不相似样本的特征应尽可能远离。
对比学习广泛应用于表示学习,尤其是在没有标注数据的情况下训练深度神经网络。它通过构造正样本对(类似样本)和负样本对(不类似样本),让模型学习更具判别性的特征。
对比学习的输入与输出(简单说明)
-
输入:
- 原始样本(如图像、文本、时间序列等)。
- 对输入样本进行两次不同的数据增强,生成一对“正样本”(视图1和视图2)。
-
输出:
- 样本的特征向量表示(通过编码器生成)。
- 学习目标:让“正样本”的特征尽量接近,同时让与其他样本的特征远离。
举例
假设输入是一张图像:
- 对这张图像随机裁剪、调整颜色,生成两个版本(视图1和视图2)。
- 用编码器提取它们的特征表示 z 1 z_1 z1 和 z 2 z_2 z2。
- 输出目标:让 z 1 z_1 z1 和 z 2 z_2 z2 的特征相似,同时与其他样本的特征区分开。
示例代码简化说明
# 输入:两种增强视图
x1 = transform(image) # 第一种增强视图
x2 = transform(image) # 第二种增强视图
# 特征提取:编码器
z1 = model(x1) # 输出第一个视图的特征向量
z2 = model(x2) # 输出第二个视图的特征向量
# 输出:对比损失
loss = contrastive_loss(z1, z2) # 学习目标
总结
- 输入:未标注数据(如图像、文本)及其增强后的不同视图。
- 输出:每个输入样本的特征向量表示,优化目标是学习语义相关的表示特征,使得相似样本的特征接近,不相似样本的特征远离。