对比学习(Contrastive Learning)

什么是对比学习?

对比学习(Contrastive Learning)是一种自监督学习方法,通过让模型学习区分相似和不相似的样本,构建有意义的特征表示。它的核心思想是:

  • 相似样本的特征应尽可能接近。
  • 不相似样本的特征应尽可能远离。

对比学习广泛应用于表示学习,尤其是在没有标注数据的情况下训练深度神经网络。它通过构造正样本对(类似样本)和负样本对(不类似样本),让模型学习更具判别性的特征。

对比学习的输入与输出(简单说明)

  • 输入

    1. 原始样本(如图像、文本、时间序列等)。
    2. 对输入样本进行两次不同的数据增强,生成一对“正样本”(视图1和视图2)。
  • 输出

    1. 样本的特征向量表示(通过编码器生成)。
    2. 学习目标:让“正样本”的特征尽量接近,同时让与其他样本的特征远离。

举例

假设输入是一张图像:

  1. 对这张图像随机裁剪、调整颜色,生成两个版本(视图1和视图2)。
  2. 用编码器提取它们的特征表示 z 1 z_1 z1 z 2 z_2 z2
  3. 输出目标:让 z 1 z_1 z1 z 2 z_2 z2 的特征相似,同时与其他样本的特征区分开。

示例代码简化说明

# 输入:两种增强视图
x1 = transform(image)  # 第一种增强视图
x2 = transform(image)  # 第二种增强视图

# 特征提取:编码器
z1 = model(x1)  # 输出第一个视图的特征向量
z2 = model(x2)  # 输出第二个视图的特征向量

# 输出:对比损失
loss = contrastive_loss(z1, z2)  # 学习目标

总结

  • 输入:未标注数据(如图像、文本)及其增强后的不同视图。
  • 输出:每个输入样本的特征向量表示,优化目标是学习语义相关的表示特征,使得相似样本的特征接近,不相似样本的特征远离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值