入门基础
- 入门基础
- 什么是目标检测?它解决什么实际问题?
- YOLO算法族的发展历程是怎样的?
- YOLOv5 相比之前版本有什么优势?
- 环境配置
- 如何搭建YOLOv5的开发环境?
- PyTorch和CUDA是什么?为什么需要它们?
- 常见的环境配置问题该如何解决?
- 数据准备
- 什么样的数据适合用YOLOv5训练?
- 如何准备和标注自己的数据集?
- 数据集格式要求是什么?如何转换?
- 模型训练
- YOLOv5的配置文件如何修改?
- 训练参数应该如何设置?
- 如何监控训练过程?
- 什么时候应该停止训练?
- 评估与优化
- 如何评估模型性能?
- 常见的性能指标有哪些?
- 模型效果不好时应该如何调优?
- 实际应用
- 如何将训练好的模型部署到实际应用中?
- 如何用YOLOv5实现实时目标检测?
- 模型量化和加速有哪些方法?
- 进阶提升
- YOLOv5的核心原理是什么?
- 如何改进YOLOv5的网络结构?
- 有哪些常用的数据增强方法?
- 图像处理流程
- 输入图片是如何预处理的?(缩放、填充、归一化)
- Backbone 网络如何提取特征?(CSP结构的作用)
- Neck 网络如何融合多尺度特征?(FPN和PAN的工作原理)
- Head 网络如何预测目标?(预测框的编解码过程)
- 后处理阶段做了什么?(NMS的原理和实现)
具体细化: a) 预处理
- mosaic 数据增强的实现原理
- letterbox 填充保持宽高比的重要性
b) 特征提取
- Focus 层的设计目的
- CSP 结构如何平衡速度和精度
- 多尺度特征金字塔的作用
c) 预测过程
- anchor-based 的工作机制
- 预测框的编码方式
- 置信度计算方法
d) 输出处理
- NMS 过程的具体步骤
- 多类别检测的特殊处理
- 后处理加速技巧