代码随想录算法训练营第54天 | 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

本文讨论了在最多两次交易限制下,利用动态规划求解股票投资中获取最大利润的问题,涉及状态转移和dp数组构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

买卖股票的最佳时机III

Alt
最多只能完成两笔交易,那么对于每一天的股票可以有5种状态:

  1. 没有操作
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

所以设计的 dp 数组应该有5个维度,分别计算可能得到的最大利润。对于如何递推,是类似于昨天的股票问题的。
对于初始化dp数组,第一次持有与不持有与之前都是一样的,dp[0][1] = -prices[0]、dp[0][2] = 0。第二次持有与不持有在第0天可以看做第一次持有又在当天卖出,这样就出现了第二次的持有与不持有,此时dp[0][3] = -prices[i]、dp[0][4] = 0
最终应该返回什么作为最大利润呢?应该返回 dp[i][4]。这个值其实包括了只交易一笔 dp[i][2] 的情况(相当于当天买当天卖完成第二次的持有)。

class Solution{
public:
	int maxProfit(vector<int>& prices) {
		int n = prices.size();
		vector<vector<int>> dp(n, vector<int>(5, 0));
		dp[0][1] = -prices[0];
		dp[0][3] = -prices[0];
		for(int i = 1; i < n; i++) {
			dp[i][0] = dp[i - 1][0];  // 其实没有操作这一状态也可以不考虑,因为不会改变始终是0
			dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
			dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
			dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
			dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
		}
		return dp[n - 1][4];
 	}
};

买卖股票的最佳时机IV

Alt
这道题就是上一道题的外推。最多两笔交易时有5种状态,最多k笔交易则应该有 2*k+1 种状态。

class Solution {
public:
	int maxProfit(int k, vector<int>& prices) {
		int len = prices.size();
		vector<vector<int>> dp(len, vector<int>(2 * k + 1, 0));
		for(int j = 1; j < 2 * k; j += 2) {
			dp[0][j] = -prices[0];  // 奇数下标是持股状态,所以应该是-prices[0]
		}
		for(int i = 1; i < len; i++) {
			for(int j = 0; j < 2 * k - 1; j += 2) {
				dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
				dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);  // 偶数下标是不持股状态,考虑卖出
			}
		}
		return dp[len - 1][2 * k];
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值