【可视化】鸢尾花(iris)数据集可视化

本文通过使用Python中的Matplotlib和Pandas库对鸢尾花数据集进行数据可视化,包括折线图、柱状图和散点图的绘制,并展示了如何进行数据集的导入与划分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

预备工作

数据集

数据集:资料,提取码:hywg

导包

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
import matplotlib

数据集导入、划分

# 导入鸢尾花数据集
df = pd.read_csv('iris.csv', index_col=0,header=0,names=[0,1,2,3,'Species'])

# 划分数据集
grouped = df[list(range(4))].groupby(df['Species'])
setosa = grouped.get_group('setosa')
versicolor = grouped.get_group('versicolor')
virginica = grouped.get_group('virginica')
# 索引重排
versicolor.reset_index(drop=True,inplace=True)
virginica.reset_index(drop=True,inplace=True)

折线图

# 折线图 每个种类的Sepal.Length折线图
tmp = pd.DataFrame({'setosa':setosa[0],'versicolor':versicolor[0],'virginica':virginica[0]})
tmp.plot()
plt.show()

在这里插入图片描述

柱状图

# 柱状图 每个种类的平均值柱状图
bar = grouped.mean()
bar.plot.bar()
plt.show()

在这里插入图片描述

散点图

# 不同种类的鸢尾花的Sepals分布
ax = setosa.plot.scatter(x=0, y=1, color='DarkBlue', label='setosa');
bx = versicolor.plot.scatter(x=0, y=1, color='DarkGreen', label='versicolor', ax=ax);
virginica.plot.scatter(x=0, y=1, color='DarkRed', label='virginica', ax=bx);
plt.show()

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值