前缀和算法主要就是可以快速的对一段区间的值求出来,这里涉及一维前缀和和二维前缀和以及配合其余的算法求解。这里有几道题可以看看,还会继续更新的。
模板题题目传送口
第一个基本上就是模板题没啥可说的就是前缀和的模板
代码如下
#include <bits/stdc++.h>
using namespace std;
int a[100000+10],b[100000+10];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
b[i]=b[i-1]+a[i];
}
while(m--)
{
int k1,k2;
cin>>k1>>k2;
cout<<b[k2]-b[k1-1]<<endl;
}
return 0;
}
`第二题``
[题目传送口](https://www.acwing.com/problem/content/82/)
这一题难处就是自己编写程序而且数组只能开两个不能使用除法
这一题其实想想也挺简单,从头开始维护和从末尾开始维护,然后拿着两个维护的数字相乘就可以了。
代码如下:
```cpp
class Solution {
public:
vector<int> multiply(const vector<int>& A) {
vector<int>left(A.size(),1);
vector<int>right(A.size(),1);
for(int i = 1;i<A.size();i++){
left[i] = A[i-1]*left[i-1];
}
for(int i = A.size()-2;i>=0;i--){
right[i] = A[i+1]*right[i+1];
}
vector<int>B(A.size(),0);
for(int i = 0;i<A.size();i++){
B[i] = left[i]*right[i];
}
return B;
}
};
第三题
[题目传送口](https://www.acwing.com/problem/content/101/)
这一题算是二维前缀和数组的模板题吧,就是在二维数组进行维护然后输出指定的某个空间
代码如下:
```cpp
#include <bits/stdc++.h>
using namespace std;
int a[5000+10][5000+10];
int main()
{
int n,r,t1,t2;
cin>>n>>r;
t1=t2=r;
for(int i=1;i<=n;i++)
{
int x,y,w;
cin>>x>>y>>w;
t1=max(x+1,t1);
t2=max(y+1,t2);
a[x+1][y+1]=w;
}
for(int i=1;i<=t1;i++)
{
for(int j=1;j<=t2;j++)
{
a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1]+a[i][j];
}
}
int sum=0;
for(int i=r;i<=t1;i++)
{
for(int j=r;j<=t2;j++)
{
sum=max(sum,a[i][j]-a[i-r][j]-a[i][j-r]+a[i-r][j-r]);
}
}
cout<<sum<<endl;
return 0;
}
第四题
[题目传送口](https://www.acwing.com/problem/content/104/)
题解:这一题就是前缀和和二分一起用了,如果要是光只用前缀和的会TLE,所以这里要用到二分数字然后在进行判断,然后二分模拟这个数组要想知道成不成立,可以把每个数减去这个二分的数字,然后利用前缀和求给定的区间f上边这几个数的和是大于0的就成立了。
代码如下:
还是贴别人的代码吧,确实比我写的简洁干净。
```cpp
#include <bits/stdc++.h>
using namespace std;
#define fir(i,a,b) for (int i=a;i<=b;i++)
#define eps 1e-5
const int N=100100;
int n,f;
double min_val,ans,l,r,mid,a[N],s[N];
int check(double mid)
{
fir(i,1,n)
s[i]=a[i]-mid,s[i]+=s[i-1];
ans=-1e8,min_val=1e8;
fir(i,f,n)
{
min_val=min(min_val,s[i-f]);
ans=max(ans,s[i]-min_val);
}
return ans<=0?0:1;
}
int main()
{
cin>>n>>f;
fir(i,1,n)
cin>>a[i];
l=-1e6,r=1e6;
while(r-l>eps)
{
mid=(l+r)/2;
if (check(mid))
l=mid;
else
r=mid;
}
cout<<(long long)(r*1000);
}