- 博客(22)
- 问答 (2)
- 收藏
- 关注
原创 力扣 163.多数元素(摩尔投票)
Step2:如果数组中有与x(我们假设的众数相同的数),计数器+1,否则计数器-1。# Step3: 若计数器归0,则重置当前的数为众数。
2023-12-26 15:15:11 428 1
原创 ResNet-50
卷积核尺寸,一般为3×3,或者5×5,此处用2个整数的元组或列表表示,比如(3,3),[5,5],如果height, width长宽一样,直接用一个整数表示就行,比如3或者5,卷积后的,卷积后的height,width的计算公式如下:滑动步长为strides,卷积核的尺寸为S,输入的尺寸为P,padding = ‘valid“此处只有两个取值,另一个取值为 “same”,表示边缘用0填充,如果padding =“same”,则输出的形状为 height =width = P/strides ,向上取整。
2022-12-01 13:53:48 750
原创 Python报错The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon suppor
Python报错The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Carbon suppor
2022-09-27 19:58:28 1357
原创 CVPR2022论文分享会--复盘
小白一枚,这一天听下来最感兴趣的一篇paper,后续等小编看完这个paper在更新详细讲解《大卷积核神经网络设计》---微软亚洲研究院(张祥雨)1. 作者根据对ViT 的思考以及大卷积核的引出RACV2021观点集锦 | 视觉transformer 从主干encoder 到任务decoder: 现状与趋势总结大卷积核的优势:更高效的提高了感受野;下游性能持续增大(尤其是在检测分割上,语义分割性能提高了很多)?为什么,因为提高了感受野的大小,提高了神经网络的Shape bias 大卷积核
2022-04-23 22:19:55 3024
原创 李沐《动手学习深度学习》之卷积神经网络---超参数
1. 卷积的两个超参{填充、步幅}2. input 33*32,应用5*5的kernel,输出会减少4*4,所以输出变为28*28每一层的卷积是的输出大小编程n-5+
2022-04-23 21:48:24 1618
原创 李沐《动手学习深度学习》--之pytorch神经网络基础(一)
如何通过继承nn.module构造模型?补充知识:线性层和全连接层没有区别,线性层即全连接层1. 回顾多层感知机net = nn.Sequential(nn.Linear(20,256), # 输入层 input20,output256 nn.RelU(), # 隐藏层(全连接层) nn.Linear(256,10)) # 输出层 input256,output 10以上代码构造了一个简单的
2022-04-08 21:38:52 1544
原创 论文小笔记--A Practical Cross-View Image Matching Method between UA Vand Satellite for UA V-Based Geo-Loc
1. 解决的问题无人机图像和卫星图的匹配在实际应用上的精确度问题2. 创新点we proposed a cross-view matching method based on location classification(LCM)LCM:(设计思想)将同一个地点的卫星图和无人机图给他同样的分类label,将同一个target location的图片进行训练同Univer-1652中一致,使用ResNet 50 module作为我们的基准模型,移除了原始的分类层,ResNet-50网
2022-04-06 10:33:08 3082
原创 正则化(Regularization)
前言接触正则化是在《动手学习深度学习》的weight_decay中权重衰退是通过L2正则化限制模型的参数,从而控制模型的复杂度文章目录前言一、正则化是什么二、L1 L2正则化说明引用:机器学习中正则化项L1和L2的直观理解_阿拉丁吃米粉的博客-CSDN博客_l1 l2正则化正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1\ell_1-norm和ℓ2ℓ2\ell_2-norm,中
2022-03-28 19:43:57 230
转载 线性模型与非线性模型的区别(转载)
线性模型和非线性模型的区别_weixin_34040079的博客-CSDN博客在机器学习的回归问题中,线性模型和非线性模型都可以去对曲线进行建模,那么线性模型和非线性模型有什么区别呢?其实,线性模型和非线性模型的区别并不在于能不能去拟合曲线。下面我们来详细介绍一下它们两个的区别。线性回归的等式线性回归需要一个线性的模型。这到底意味着什么呢?一个模型如果是线性的,就意味着它的参数项要么是常数,要么是原参数和要...https://blog.csdn.net/weixin_34040079/article/de
2022-03-23 19:10:36 1616
原创 IOU与mAP
1.IOU定义:交并比;预测的边框和真实的边框的交集与并集比例引用:目标检测之 IoU_黑暗星球的博客-CSDN博客_目标检测iou2.mAP(Precision/recall)(VOC和COCO是两个目标检测的数据集,且在VOC中,我们认为IOU>0.5即为TP)常规的mAP计算为(这是一个N类检测任务):1、计算单张图片中class1的精度P(VOC默认IOU大于0.5即为TP,COCO稍复杂些,下文再说)2、循环所有测试集图片,重复1过程求所有图片P的均值即为cla.
2022-03-22 20:49:15 444
原创 准确率、精准率、召回率
参考:准确率、精确率、召回率 - 知乎以一个二分类系统来讲,通常情况下我们会将数据分为两类:正确(T),错误(F),但是在我们实际操作的运行模型的结果中会出现四种不同的分类结果P(positive)N(Nagitive)(声明:这里所用的符号标记与所引用的链接有所不同)TP:本身是正类,结果划分是正类TN:本身是正类,结果划分为负类FP:本身是负类,结果划分为正类FN: 本身是负类,结果划分为负类1.准确率:所有正确的分类的比重Accuracy=(TP+FN)/(TP
2022-03-22 20:07:20 3080 1
原创 University-1652: A Multi-view Multi-source Benchmarkfor Drone-based Geo-localization ----论文+代码复盘(二)
源码笔记github源码地址:https://github.com/layumi/University1652-Baseline 小编第一次分析源码,有错误请大家积极指正,谢谢!一、训练模型(train.py)1.导入所需要的包/函数 (有些函数是论文作者自己写的,保存在project中,这里没有放出源码,有需要可以去我上面放的源码地址中查询)from __future__ import print_function, divis...
2022-03-21 15:23:30 2615 3
原创 University-1652: A Multi-view Multi-source Benchmarkfor Drone-based Geo-localization ----论文+代码复盘(一)
目录一、Abstract二、University-1652 Dataset Introduction1.Dataset Descirption2.Evaluation Protocol三、交叉视野匹配1. Feature Representations2. NetWork Architecture and loss FunctionNetWork ArchitectureLoss Function四、实验部分1. 实验的参数设置2. 实验结果(...
2022-03-20 16:31:41 2801
原创 Unversity_1652笔记(基于无人机地理位置定位的多视图多源的实验)
University-1652: A Multi-view Multi-source Benchmark for Drone-based Geo-localization阅读笔记 2022-1-261.Abstract1.1 研究目的or意义考虑到跨视角定位问题最大的挑战是模型在学习针对大视角变化的稳定性特征现存的基准可以提供帮助,但是视角有限,提出将无人机作为第三方平台作为一个视角点1.2研究创新点University-1652数据集包含了1652个高校的地图,来自三个平台:合
2022-02-26 21:55:14 4150
原创 李沐深度学习笔记(利用pytorch的深度学习框架实现线性回归)
1. 主要代码:# 线性回归的简单实现import torchfrom torch.utils import datafrom d2l import torch as d2l# 获取数据集true_w = torch.tensor([2,-3.4])true_b = 4.2features,labels = d2l.synthetic_data(true_w,true_b,1000) # 调用d2l库中的synthetic_data构造一个数据集# 这里的d2l.synthetic
2022-01-22 16:18:48 2050
原创 axis(轴)
若一个矩阵A的shape为[2,5,4]axis=0 将2去掉,取A的[:,5,4]axis=1 将5去掉,取A的[2,:,4]axis=2 将4去掉,取A的[2,5,:]axis=[1,2] 将2,5去掉,取A的[:,:,4]在numpy与torch的求和函数,mean函数中经常用到axis与keepdims参数keepdims(保持维度)参数解释:1.keepdims=True; 将aixs中的维度改成1ex:axis=0,keepdims=True,A取:[1,5,4].
2022-01-18 15:22:16 1887
原创 python安装虚拟环境中的包
1、windows+R 打开2、cmd打开命令提示符3、进入虚拟环境 conda activate (你的环境名称)4、安装镜像(pip config set 网址)附:清华大学开源软件镜像站:condaconfig--addchannelshttps://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/condaconfig--addchannelshttps://mirrors.tuna.tsinghua.e...
2021-12-24 10:18:14 2105
空空如也
CUDA版本匹配问题
2022-07-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人