关于提高PaddleOCR识别准确率的一些优化(一)

本文探讨了在OCR识别中遇到的问题,如图片倾斜、颠倒、尺寸过大和模糊,提出初步解决方案,包括使用radon变换进行图像矫正、适当地缩放图像以及考虑提高图像对比度。针对后续优化,将着重于提高矫正准确率和尝试图像对比度增强,以提升OCR识别效果。
摘要由CSDN通过智能技术生成


前言

场景分析:识别用户上传的图片中的文本
存在的问题:
1、图片倾斜导致ocr识别不准
2、图片颠倒,导致识别出来的文本,顺序错乱
3、图片尺寸太大,识别效率太慢
4、部分图片模糊,导致识别准确率率下降


一、初步解决方案

1、矫正图像:

  • 二值化后,寻找外接矩形边缘线,计算角度------鲁棒性差
  • hough变换-------效果太差
  • radon变换------目前效果最好

由于用户拍照场景比较复杂,导致几种典型的算法均不适用,目前效果最好的为radon变换,60%的矫正准确率。

2、缩放图像:

  • 对于尺寸大于2000 * 2000的图像,缩放至(h * 0.5,w * 0.5)识别准确率有所提升
  • 对于尺寸小于2000 * 2000的图像,缩放至(h * 0.5,w * 0.5)识别准确率下降

因此,2000 * 2000的size是图像是否进行缩放的一个临界点

3、提高图像对比度:

  • 理论上,提高图像的对比度能使像素分布更均匀,使白的更白,黑的更黑。

此处有待进一步的测试

二、后续的优化方向

1、提高矫正准确率:
经过多轮测试发现,矫正后的图像,识别效果一定优于原图,因此,后续将着重于提高矫正准确率的工作

2、图像对比度增强:
在矫正准确率达到瓶颈后,会尝试对图像做一些预处理,以提高识别效果

总结

1、对于OCR,图像尺寸太大了效果反而更差
2、矫正图像,能有效提升OCR识别效果

相关文章:
关于提高PaddleOCR识别准确率的一些优化(二)
关于提高PaddleOCR识别准确率的一些优化(三)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ToTensor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值