最好用的图文识别OCR -- PaddleOCR(2) 提高检测识别精度 && 推理效率(PPOCR模型转ONNX模型进行推理)


在实际推理过程中,使用 PaddleOCR 模型时效率较慢,经测试每张图片的检测与识别平均耗时超过 5 秒,这在需要大规模自动化处理的场景中无法满足需求。为此,我尝试将 PaddleOCR 模型转换为 ONNX 格式进行推理,以提升效率。以下是模型转换与使用的完整过程记录。


基于项目

本次转换基于 GitHub 上的 OnnxOCR 项目,仓库地址如下:
https://github.com/jingsongliujing/OnnxOCR

项目的介绍图如下:
OnnxOCR 项目介绍

优化后的代码参考: https://github.com/CKboss/pp_onnx
本文使用到的模型转换工具: Paddle2ONNX


环境准备

  1. 安装必要工具和依赖
pip install paddlepaddle==3.0.0b2 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/ \
&& pip install paddlex==3.0.0b2 \
&& pip install paddle2onnx \
&& pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt \
&& pip install onnx==1.17.0 \
&& pip install onnxruntime==1.20.1
# (或者安装GPU版本 pip install onnxruntime-gpu)
  1. PaddleOCR 官方模型列表

高效率版本

1 下载模型与相关资源

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以下为高效率版本用到的模型及其下载地址:

分别下载并解压上面的模型列表 留作备用

2. 模型转换

下载 OnnxOCR 项目代码:

git clone https://github.com/jingsongliujing/OnnxOCR.git

转换 PaddleOCR 模型为 ONNX:
使用之前下载好的模型文件开始进行模型转换,以下命令用于将 PaddleOCR 的检测、识别和方向分类模型分别转换为 ONNX 格式。

# 检测模型转换
paddle2onnx --model_dir ./PP-OCRv4_mobile_det_infer \
             --model_filename inference.pdmodel \
             --params_filename inference.pdiparams \
             --save_file ./det2.onnx \
             --opset_version 14 --enable_onnx_checker True

# 识别模型转换
paddle2onnx --model_dir ./PP-OCRv4_mobile_rec_infer \
             --model_filename inference.pdmodel \
             --params_filename inference.pdiparams \
             --save_file ./rec2.onnx \
             --opset_version 14 --enable_onnx_checker True

# 方向分类模型转换
paddle2onnx --model_dir ./ch_ppocr_mobile_v2.0_cls_infer \
             --model_filename inference.pdmodel \
             --params_filename inference.pdiparams \
             --save_file ./cls.onnx \
             --opset_version 14 --enable_onnx_checker True

模型文件的最终存放结构如下:
在这里插入图片描述


3. 转换后效果测试

测试图片示例:

测试图片

使用 PaddleOCR 模型进行推理:
  • 配置PaddleOCR的运行环境

    参考上一篇文章中的 PaddleOCR 高效率版本 配置:
    最好用的图文识别OCR – PaddleOCR(1) 快速集成

  • 代码演示 PaddleOCR 的推理流程:

    from paddlex import create_pipeline
    import cv2
    import time
    
    time1 = time.time()
    pipeline = create_pipeline(pipeline="../OCR.yaml",device='cpu')
    
    image = cv2.imread("../tb-img/img9.webp")
    output = pipeline.predict(image)
    time_count = time.time() - time1
    
    for res in output:
        dt_scores = res.get("dt_scores")
        rec_text = res.get("rec_text")
        for i in range(len(rec_text)):
            print(rec_text[i],dt_scores[i])
        res.save_to_img(f"./output.jpg")
    print(f'------------------------ 总花费时间: {time_count} 秒----------------------')
    
  • 推理结果和用时
    在这里插入图片描述

使用转换后的 ONNX 模型进行推理:
  • 代码演示 ONNX 模型的推理流程:

    import cv2
    import time
    from onnxocr.onnx_paddleocr import ONNXPaddleOcr,sav2Img
    from pathlib import Path
    
    # 获取当前文件所在的目录
    module_dir = Path(__file__).resolve().parent
    ch_model = {
        "det_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/det/ch/det.onnx',
        "rec_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/rec/ch/rec.onnx',
        "cls_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/cls/ch_ppocr_mobile_v2.0_cls.onnx',
        "rec_char_dict_path": f'{module_dir}/onnxocr/models/ppocrv4/rec_char_dict/ppocr_keys_v1.txt',
        "vis_font_path":f'{module_dir}/onnxocr/fonts/simfang.ttf'
    }
    
    time1 = time.time()
    
    model = ONNXPaddleOcr(
        use_angle_cls=True, 
        use_gpu=False,
        det_model_dir=ch_model["det_model_dir"],
        rec_model_dir=ch_model["rec_model_dir"],
        cls_model_dir=ch_model["cls_model_dir"],
        rec_char_dict_path=ch_model["rec_char_dict_path"],
        vis_font_path=ch_model["vis_font_path"],
        drop_score=0.1,
        )
    
    resized_img = cv2.imread("../tb-img/img9.webp")
    result = model.ocr(resized_img)
    time_count = time.time() - time1
    
    for res in result[0]:
        print(res[1][0],res[1][1])
        
    sav2Img(resized_img, result)
    print(f'------------------------ 总花费时间: {time_count} 秒----------------------')
    
  • 推理结果和用时
    在这里插入图片描述


高精度版本

1 下载模型与相关资源

在这里插入图片描述
在这里插入图片描述

以下为高精度版本的模型及其下载地址:

分别下载并解压上面的模型列表 & 字典文件 & 中文字体 留作备用

2 配置PaddleOCR的运行环境

参考上一篇文章中的 PaddleOCR 高精度版本 配置:
最好用的图文识别OCR – PaddleOCR(1) 快速集成

3. 模型转换

下载 OnnxOCR 项目代码:

git clone https://github.com/jingsongliujing/OnnxOCR.git

转换 PaddleOCR 模型为 ONNX:
使用之前下载好的模型文件开始进行模型转换,以下命令用于将 PaddleOCR 的检测、识别和方向分类模型分别转换为 ONNX 格式。

# 检测模型转换
paddle2onnx --model_dir ./PP-OCRv4_server_det_infer \
             --model_filename inference.pdmodel \
             --params_filename inference.pdiparams \
             --save_file ./PP-OCRv4_server_det.onnx \
             --opset_version 14 --enable_onnx_checker True

# 识别模型转换
paddle2onnx --model_dir ./PP-OCRv4_server_rec_infer \
             --model_filename inference.pdmodel \
             --params_filename inference.pdiparams \
             --save_file ./PP-OCRv4_server_rec.onnx \
             --opset_version 14 --enable_onnx_checker True

# 方向分类模型转换
paddle2onnx --model_dir ./ch_ppocr_mobile_v2.0_cls_infer \
             --model_filename inference.pdmodel \
             --params_filename inference.pdiparams \
             --save_file ./ch_ppocr_mobile_v2.0_cls.onnx \
             --opset_version 14 --enable_onnx_checker True

模型文件的最终存放结构如下:
在这里插入图片描述


4. 转换后效果测试

测试图片示例:

测试图片

使用 PaddleOCR 模型进行推理:
  • 配置PaddleOCR的运行环境

    参考上一篇文章中的 PaddleOCR 高精度版本 配置:
    最好用的图文识别OCR – PaddleOCR(1) 快速集成

  • 代码演示 PaddleOCR 的推理流程:

    from paddlex import create_pipeline
    import cv2
    import time
    
    time1 = time.time()
    pipeline = create_pipeline(pipeline="../OCR.yaml",device='cpu')
    
    image = cv2.imread("../tb-img/img9.webp")
    output = pipeline.predict(image)
    time_count = time.time() - time1
    
    for res in output:
        print(res.get("rec_text"),res.get("dt_scores"))
    print(f'------------------------ 总花费时间: {time_count} 秒----------------------')
    
  • 推理结果和用时
    在这里插入图片描述

使用转换后的 ONNX 模型进行推理:

以下代码演示 ONNX 模型的推理流程:

import cv2
import time
from onnxocr.onnx_paddleocr import ONNXPaddleOcr,sav2Img
from pathlib import Path

# 获取当前文件所在的目录
module_dir = Path(__file__).resolve().parent
ch_model = {
    "det_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/det/ch/PP-OCRv4_server_det.onnx',
    "rec_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/rec/ch/PP-OCRv4_server_rec.onnx',
    "cls_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/cls/ch_ppocr_mobile_v2.0_cls.onnx',
    "rec_char_dict_path": f'{module_dir}/onnxocr/models/ppocrv4/rec_char_dict/ppocr_keys_v1.txt',
    "vis_font_path":f'{module_dir}/onnxocr/fonts/simfang.ttf'
}

time1 = time.time()

model = ONNXPaddleOcr(
    use_angle_cls=True, 
    use_gpu=False,
    det_model_dir=ch_model["det_model_dir"],
    rec_model_dir=ch_model["rec_model_dir"],
    cls_model_dir=ch_model["cls_model_dir"],
    rec_char_dict_path=ch_model["rec_char_dict_path"],
    vis_font_path=ch_model["vis_font_path"],
    drop_score=0.1,
    )

resized_img = cv2.imread("../tb-img/img9.webp")
result = model.ocr(resized_img)
time_count = time.time() - time1

for res in result[0]:
    print(res[1][0],res[1][1])
print(f'------------------------ 总花费时间: {time_count} 秒----------------------')
  • 推理结果和用时
    在这里插入图片描述

结果比对

  • 不同版本 识别准确度 & 用时 比对:

    用时 / s识别准确度
    Paddle高效率2.07一般
    ONNX高效率0.48较差
    Paddle高精度1.82精准
    ONNX高精度7.01精准
  • 高效率版本
    测试显示,在相同硬件环境下,通过将 PaddleOCR 高效率模型转换为 ONNX 格式,可以显著提升推理速度。但是精度缺有所损失。

  • 高精度版本
    测试显示,在相同硬件环境下,将 PaddleOCR 高效率模型转换为 ONNX 格式,最终的运行效率远不如PaddleOCR。


思考 & 优化

有没有一种办法即提高了识别的效率,同时又可以不会损失精准度呢?测试下来有一种办法,就是 使用PaddleOCR高效率版本转为ONNX -> 转变要识别图片的大小

优化后的代码如下:

import cv2
import time
from onnxocr.onnx_paddleocr import ONNXPaddleOcr,sav2Img
from pathlib import Path

def resize_image(image_path, scale=0.5, max_size=960):
    # 读取图片
    img = cv2.imread(image_path)
    if img is None:
        raise FileNotFoundError(f"图片 {image_path} 不存在!")
    
    # 获取原始宽高
    original_height, original_width = img.shape[:2]
    print(f"原始宽高: {original_width}x{original_height}")
    
    # 首先将宽高按指定比例缩小或放大
    new_width = int(original_width * scale)
    new_height = int(original_height * scale)

    # 如果修改后图片有一边大于 max_size,则进行二次等比缩放
    if max(new_width, new_height) > max_size:
        if new_width > new_height:  # 宽度是最大边
            scale = max_size / new_width
        else:  # 高度是最大边
            scale = max_size / new_height
        new_width = int(new_width * scale)
        new_height = int(new_height * scale)

    print(f"调整后的宽高: {new_width}x{new_height}")

    # 调整图片大小
    resized_img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

    return resized_img

module_dir = Path(__file__).resolve().parent
ch_model = {
    "det_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/det/ch/det.onnx',
    "rec_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/rec/ch/rec.onnx',
    "cls_model_dir": f'{module_dir}/onnxocr/models/ppocrv4/cls/ch_ppocr_mobile_v2.0_cls.onnx',
    "rec_char_dict_path": f'{module_dir}/onnxocr/models/ppocrv4/rec_char_dict/ppocr_keys_v1.txt',
    "vis_font_path":f'{module_dir}/onnxocr/fonts/simfang.ttf'
}

time1 = time.time()
model = ONNXPaddleOcr(
    use_angle_cls=True, 
    use_gpu=False,
    det_model_dir=ch_model["det_model_dir"],
    rec_model_dir=ch_model["rec_model_dir"],
    cls_model_dir=ch_model["cls_model_dir"],
    rec_char_dict_path=ch_model["rec_char_dict_path"],
    vis_font_path=ch_model["vis_font_path"],
    drop_score=0.1,
    )

resized_img = resize_image(f"../tb-img/img9.webp",0.4)
result = model.ocr(resized_img)
time_count = time.time() - time1

for res in result[0]:
    print(res[1][0],res[1][1])
sav2Img(resized_img, result, "output.jpg")
print(f'------------------------ 总花费时间: {time_count} 秒----------------------')
  • 优化后的 推理结果和用时
    在这里插入图片描述

总结

可以看到经过调整图片整体尺寸大小,使用PaddleOCR高效率版本转为ONNX , 不仅可以提高整体的识别效率,同时又不会损失识别的精度。

大家可以根据自己在实际识别场景所用的图片中文字大小进行 等比缩小或者等比放大

  • 图片中的文字较大:适当缩小图片
  • 图片中的文字较小:适当放大图片

找到适合自己的识别场景的识别规律,即可进行规模化部署。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值