增量预训练baichuan-13b-chat遇到的那些坑

本文讲述了在单机双4090 GPU环境下,利用Deepspeed训练和推理百川13B聊天模型所遇到的问题。通过参数并行和offload策略解决了显存不足的问题,但在训练过程中发现Lora增量预训练的模型需要特殊恢复权重才能使用。在推理阶段,由于模型过大,需要删除非Lora层参数以降低内存需求。此外,文中提到在继续训练时要处理数据重复训练的问题,确保每条数据只训练一次。
摘要由CSDN通过智能技术生成


前言

资源

单机两4090,如图
在这里插入图片描述

单卡24G,baichuan-13b-chat单卡推理需要至少26G,因此仅用一张卡,我们是无法加载百川13B的模型,所以,无论是推理还是训练,我们都必须并行!

deepspeed

核心思想:GPU显存不够,CPU内存来凑

虽然我们两张卡加起来有48G,按理说显存是足够的,实则不是。

就两张卡而言,分别为GPU0和GPU1,两块GPU上分别有一半模型参数,即6.5B,占用13G,在使用deepspeed的参数并行进行前向传播时,GPU0需要把自己身上的参数传给GPU1临时保存起来,参与前向传播,这时,GPU1身上的参数即为整个模型的参数,即13B,占用26G,超出了单卡显存上限,因此,当只有两块卡时,不使用offload策略的前提下,单卡的显存必

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ToTensor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值