《具体数学》第1章 递归问题 部分习题

作业题

8

推一推即可发现周期性。
Q 0 Q_0 Q0 = α \alpha α
Q 1 Q_1 Q1 = β \beta β
Q 2 Q_2 Q2 = 1 + β α \frac{1+\beta }{\alpha } α1+β
Q 3 Q_3 Q3 = 1 + α + β α ∗ β \frac{1+\alpha + \beta}{\alpha*\beta} αβ1+α+β
Q 4 Q_4 Q4 = 1 + α β \frac{1 + \alpha}{\beta} β1+α
Q 5 Q_5 Q5 = α \alpha α
Q 6 Q_6 Q6 = β \beta β

∴ \therefore Q n Q_n Qn = Q n m o d    5 Q_{n\mod5} Qnmod5

9

a

证明 P ( n ) → P ( n − 1 ) P(n) \rightarrow P(n-1) P(n)P(n1)
x n x_n xn = ∑ 1 n − 1 x i n − 1 \frac{\sum_{1}^{n-1} x_i}{n-1} n11n1xi
P ( n ) : x 1 … x n ≤ ( ∑ 1 n x i n ) n P(n) : x_1…x_n\leq {\left(\frac{\sum_{1}^{n}x_i}{n}\right)}^{n} P(n):x1xn(n1nxi)n
x n x_n xn代入不等式右边,
x 1 … x n − 1 ∗ x n ≤ ( ∑ 1 n − 1 x i n − 1 ) n x_1…x_{n-1}*x_n \leq {\left(\frac{\sum_{1}^{n-1}x_i}{n-1}\right)}^{n} x1xn1xn(n11n1xi)n
x n = 0 x_n = 0 xn=0不等式显然成立。
x n = ̸ 0 {x_n} =\not0 xn≠0不等式两边同除 x n x_n xn,得
x 1 … x n − 1 ≤ ( ∑ 1 n − 1 x i n − 1 ) n − 1 x_1…x_{n-1}\leq {\left(\frac{\sum_{1}^{n-1}x_i}{n-1}\right)}^{n-1} x1xn1(n11n1xi)n1
P ( n − 1 ) P(n-1) P(n1).

b

证明 P ( n ) P(n) P(n)蕴含 P ( 2 n ) P(2n) P(2n)
1 2 log ⁡ n ( x 1 … x 2 n ) = 1 2 log ⁡ n ( x 1 … x n ) + 1 2 log ⁡ n ( x n + 1 … x 2 n ) \frac{1}{2}\log_{n}{(x_1…x_{2n})} =\frac{1}{2}\log_{n}{(x_1…x_n)} + \frac{1}{2}\log_{n}{(x_{n+1}…x_{2n})} 21logn(x1x2n)=21logn(x1xn)+21logn(xn+1x2n)

∵ P ( n ) \because P(n) P(n)成立,推
1 2 log ⁡ n ( x 1 … x 2 n ) ≤ ∑ 1 n x i 2 n + ∑ n + 1 2 n x i 2 n \frac{1}{2}\log_{n}{(x_1…x_{2n})} \leq \frac{\sum_{1}^{n}x_i}{2n}+ \frac{ \sum_{n+1}^{2n}x_i }{2n} 21logn(x1x2n)2n1nxi+2nn+12nxi

1 2 log ⁡ n ( x 1 … x 2 n ) ≤ ∑ 1 2 n x i 2 n \frac{1}{2}\log_{n}{(x_1…x_{2n})} \leq \frac{\sum_{1}^{2n}x_i} {2n} 21logn(x1x2n)2n12nxi

x 1 … x 2 n ≤ ( ∑ 1 2 n x i 2 n ) 2 n x_1…x_{2n}\leq { \left ( \frac{\sum_{1}^{2n}x_i}{2n}\right)} ^{2n} x1x2n(2n12nxi)2n
P ( n ) P(n) P(n)蕴含 P ( 2 n ) P(2n) P(2n)

c

数学归纳法即可
n = 2 n = 2 n=2 时,成立,
假设 n = k n = k n=k时成立
n = k + 1 n = k + 1 n=k+1时,若 n n n为偶数,因为命题 P ( n / 2 ) P(n/2) P(n/2)成立,则命题 P ( n ) P(n) P(n)成立;若 n n n为奇数,存在一小于 n n n的整数 m = n + 1 2 m = \frac{n+1}{2} m=2n+1,有 P ( m ) P(m) P(m)成立,故 P ( 2 m ) P(2m) P(2m)成立,所以 P ( 2 m − 1 ) P(2m-1) P(2m1) P ( n ) P(n) P(n)成立
故蕴含了 P ( n ) P(n) P(n)对所有 n n n为真

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值