-
循环节为5,即 Q n = Q n + 5 Q_n=Q_{n+5} Qn=Qn+5,归纳即可
-
-
将 x n x_n xn代入 P ( n ) P(n) P(n),得到 P ( n − 1 ) P(n-1) P(n−1)形式结果,且 x 1 , … , x n − 1 x_1,\dots,x_{n-1} x1,…,xn−1都是任意的,满足条件。
-
$$
\begin{aligned}
\prod{2n}_{i=1}x_i&\leq(\frac{\sum_{i=1}nx_i}{n})n(\frac{\sum_{i=n+1}{2n}x_{i}}{n})^n\dots P(n)\\end{aligned}
$$整理系数,使用P(2),就可以得到P(2n)的结果。
-
对于P(n),总有最小的m,使得 2 m ≥ n 2^m\geq n 2m≥n。对m使用归纳法即可。
-
-
Q n Q_n Qn先将圆盘 1 … n − 1 1\dots n-1 1…n−1移到其它桩柱,然后将n移到B,再将所有圆盘移到B; R n R_n Rn先将圆盘 1 … n − 1 1\dots n-1 1…n−1都移到A,将圆盘n移到其它桩柱,将 1 … n − 1 1\dots n-1 1…n−1移到B,将n移到A,再将所有圆盘移到A。这样可以得到一个理论上界,证明这是最小值的方法和热身题中类似:移动最下方圆盘n,要求上面n-1个圆盘在其逆时针相邻的桩柱上。
-
-
把两个相同大小的圆盘看作一个圆盘,但是计算两次移动次数,简化为单重Hanoi塔问题。移动次数是单重Hanoi塔问题移动次数的两倍。
-
设中间的桩柱为C。先将上面的n-1种圆盘不记顺序的从A移到B,然后将最下面的两个圆盘移到C,此时这两个圆盘顺序与初始相反。再将n-1种圆盘不记顺序的移到B,然后将最下面的两个圆盘移到B,最后将n-1种圆盘按顺序移到B即可。 B n = A n − 1 + 2 + A n − 1 + 2 + B n − 1 B_n=A_{n-1}+2+A_{n-1}+2+B_{n-1} Bn=An−1+2+An−1+2+Bn−1。
这五个部分的必要性可以分别证明,合成后仍为最优。
-
-
思路与11.a相同。P(n)= ∑ i = 0 n − 1 2 i m i \sum_{i=0}^{n-1}2^{i}m_i ∑i=0n−12imi
-
设n条Z形线最多将平面划分为 L ( n ) L(n) L(n)条区域, L ( 0 ) = 1 , L ( 1 ) = 2 , L ( 2 ) = 12 L(0)=1, L(1)=2, L(2)=12 L(0)=1,L(1)=2,L(2)=12。每条Z形线可以看作3条不完整的直线,最多与前n-1条Z形线有3n-4个交点,加上自身的两个交点, L ( n ) = 9 ( n − 1 ) − 1 + 2 + L ( n − 1 ) = L ( n − 1 ) + 9 n − 8 L(n)=9(n-1)-1+2+L(n-1)=L(n-1)+9n-8 L(n)=9(n−1)−1+2+L(n−1)=L(n−1)+9n−8
-
我没有想到答案的思路。 P n P_n Pn相当于前n-1个平面在第n个平面上划分区域,最多共有n-1条交线,划分出 L n − 1 L_{n-1} Ln−1个区域,即 P n = P n − 1 + L n − 1 P_n=P_{n-1}+L_{n-1} Pn=Pn−1+Ln−1
-
由条件, n=J(n)+1,得出n的二进制形式除最低位为0外,其余都为1.
其实本题的递推式与Joseph环完全相同,但是需要 I ( 2 ) 和 I ( 3 ) I(2)和I(3) I(2)和I(3)作为初始条件。
-
书P13下方,变动基数解。f其实是一个映射,从基数为2映到基数为3.
但实际上,好像并没有办法得到这个递归式的确切解…可能是我的问题,最终都会依赖于A(n).