

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
激活函数:神经网络的灵魂
在神经网络中,激活函数(Activation Function)扮演着至关重要的角色。它赋予了神经网络非线性特性,使其能够拟合复杂的数据模式。选择合适的激活函数对于神经网络的性能和收敛性有着深远的影响。本文将深入探讨激活函数的基本概念、常见类型及其特性,以及激活函数的选择策略,帮助读者更好地理解和应用激活函数。
什么是激活函数?
在神经网络中,每个神经元会对输入信号进行加权求和,得到一个线性组合。然而,仅仅使用线性组合是无法拟合复杂的非线性函数的。为了赋予神经网络非线性特性,我们需要在线性组合之后引入一个非线性激活函数。
激活函数是一种数学函数,它将神经元的输入信号映射到输出信号。通过引入非线性激活函数,神经网络就能够学习复杂的非线性映射关系,从而拟合各种类型的数据。
数学上,我们可以将激活函数表示为:
y = f ( x ) y = f(x) y=f(x)
其中,x
是神经元的输入信号,f
是激活函数,y
是神经元的输出信号。
不同的激活函数具有不同的数学特性,因此在不同的场景下会有不同的表现。选择合适的激活函数对于神经网络的性能至关重要。
常见激活函数类型
在深度学习的发展历程中,研究人员提出了各种不同的激活函数。以下是一些常见的激活函数类型:
1. Sigmoid函数
Sigmoid函数是最早被引入神经网络的激活函数之一,它的数学表达式如下:
f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+e−x1
Sigmoid函数将输入值映射到(0,1)范围内,具有平滑和可导的特性。然而,它也存在一些缺点,如