题目描述
对于给定的一个长度为NN的正整数数列A_iA
i
,现要将其分成连续的若干段,并且每段和不超过MM(可以等于MM),问最少能将其分成多少段使得满足要求。
输入格式
第1行包含两个正整数N,MN,M,表示了数列A_iA
i
的长度与每段和的最大值,第22行包含NN个空格隔开的非负整数A_iA
i
,如题目所述。
输出格式
一个正整数,输出最少划分的段数。
输入输出样例
输入 #1 复制
5 6
4 2 4 5 1
输出 #1 复制
3
说明/提示
对于20%20%的数据,有N≤10N≤10;
对于40%40%的数据,有N≤1000N≤1000;
对于100%100%的数据,有N≤100000,M≤10^9N≤100000,M≤10
9
,MM大于所有数的最小值,A_iA
i
之和不超过10^910
9
。
将数列如下划分:
[4][2 4][5 1][4][24][51]
第一段和为44,第22段和为66,第33段和为66均满足和不超过M=6M=6,并可以证明33是最少划分的段数。
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,ans = 1;
int k=0;
int main()
{
cin>>n>>m;
while(n--)
{
int a;
cin>>a;
if(k+a<=m)
{
k=k+a;
}
else
{
ans++;
k=a;
}
}
printf("%d\n",ans);
return 0;
}
1.1
题目描述
由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要。帮助Marry乳业找到最优的牛奶采购方案。
Marry乳业从一些奶农手中采购牛奶,并且每一位奶农为乳制品加工企业提供的价格是不同的。此外,就像每头奶牛每天只能挤出固定数量的奶,每位奶农每天能提供的牛奶数量是一定的。每天Marry乳业可以从奶农手中采购到小于或者等于奶农最大产量的整数数量的牛奶。
给出Marry乳业每天对牛奶的需求量,还有每位奶农提供的牛奶单价和产量。计算采购足够数量的牛奶所需的最小花费。
注:每天所有奶农的总产量大于Marry乳业的需求量。
输入格式
第 1 行共二个数值:N,(0<=N<=2,000,000)是需要牛奶的总数;M,(0<= M<=5,000)是提供牛奶的农民个数。
第 2 到 M+1 行:每行二个整数:Pi 和 Ai。
Pi(0<= Pi<=1,000) 是农民 i 的牛奶的单价。
Ai(0 <= Ai <= 2,000,000)是农民 i 一天能卖给Marry的牛奶制造公司的牛奶数量。
输出格式
单独的一行包含单独的一个整数,表示Marry的牛奶制造公司拿到所需的牛奶所要的最小费用。
输入输出样例
输入 #1 复制
100 5
5 20
9 40
3 10
8 80
6 30
输出 #1 复制
630
说明/提示
题目翻译来自NOCOW。
USACO Training Section 1.3`
先按照单价排序,单价小的在前面; 单价一样的就把产量多的放前面;
当还需要采购时,我们从当前还需采购值开始,挨个减一,总价钱加上当前最小单价,当这头牛产量为零,换一头牛,直到购买完(n=0)为止。
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,ans;
struct node{
int a,b;
}a[5005];
bool cmp(node a,node b)
{
if(a.a!=b.a)
{
return a.a<b.a;
}
else
{
return a.b>b.b;
}
}
int main()
{
cin>>n>>m;
for(int i=1;i<=m;i++)
{
cin>>a[i].a>>a[i].b;
}
sort(a+1,a+1+m,cmp);
int i=1;
while(n)
{
if(a[i].b!=0)
{
a[i].b--;
ans+=a[i].a;
n--;
}
else
{
i++;
}
}
cout<<ans<<endl;
return 0;
}`
`
1题目描述
有n个人在一个水龙头前排队接水,假如每个人接水的时间为Ti,请编程找出这n个人排队的一种顺序,使得n个人的平均等待时间最小。
输入格式
输入文件共两行,第一行为n;第二行分别表示第1个人到第n个人每人的接水时间T1,T2,…,Tn,每个数据之间有1个空格。
输出格式
输出文件有两行,第一行为一种排队顺序,即1到n的一种排列;第二行为这种排列方案下的平均等待时间(输出结果精确到小数点后两位)。
输入输出样例
输入 #1 复制
10
56 12 1 99 1000 234 33 55 99 812
输出 #1 复制
3 2 7 8 1 4 9 6 10 5
291.90
说明/提示
n<=1000
ti<=1e6,不保证ti不重复
当ti重复时,按照输入顺序即可(sort是可以的)
代码:
#include<bits/stdc++.h>
using namespace std;
struct node{
int b,num;
};
bool cmp(node x,node y)
{
return x.b<y.b;
}
int main()
{
struct node a[1010];
int n,i,j;
double time = 0;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i].b;
a[i].num=i;
}
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
{
cout<<a[i].num<<" ";
}
cout<<endl;
for(j=n-1;j>=1;j--)
{
i=n-j;
time+=a[i].b*j;
}
printf("%.2lf",time/n);
return 0;
}
题目描述
元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得 的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品, 并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。
你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。
输入格式
共n+2n+2行:
第11行包括一个整数ww,为每组纪念品价格之和的上上限。
第22行为一个整数nn,表示购来的纪念品的总件数GG。
第33至n+2n+2行每行包含一个正整数P_i(5 \le P_i \le w)P
i
(5≤P
i
≤w)表示所对应纪念品的价格。
输出格式
一个整数,即最少的分组数目。
输入输出样例
输入 #1 复制
100
9
90
20
20
30
50
60
70
80
90
输出 #1 复制
6
说明/提示
50%的数据满足:1 \le n \le 151≤n≤15
100%的数据满足:1 \le n \le 30000,80 \le w \le 2001≤n≤30000,80≤w≤200
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,k;
int ans = 0;
int l,r;
int a[30100];
int main()
{
cin>>k;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+1+n);
l=1,r=n;
while(l<=r)
{
if(a[l]+a[r]<=k)
{
l++,r--,ans++;
}
else
{
r--,ans++;
}
}
cout<<ans<<endl;
return 0;
}
题目描述
有NN堆纸牌,编号分别为 1,2,…,N1,2,…,N。每堆上有若干张,但纸牌总数必为NN的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为11堆上取的纸牌,只能移到编号为22的堆上;在编号为NN的堆上取的纸牌,只能移到编号为N-1N−1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如N=4N=4,44堆纸牌数分别为:
①99②88③1717④66
移动33次可达到目的:
从 ③ 取44张牌放到 ④ (9,8,13,109,8,13,10)-> 从 ③ 取33张牌放到 ②(9,11,10,109,11,10,10)-> 从 ② 取11张牌放到①(10,10,10,1010,10,10,10)。
输入格式
两行
第一行为:NN(NN 堆纸牌,1 \le N \le 1001≤N≤100)
第二行为:A_1,A_2, … ,A_nA
1
,A
2
,…,A
n
(NN堆纸牌,每堆纸牌初始数,1 \le A_i \le 100001≤A
i
≤10000)
输出格式
一行:即所有堆均达到相等时的最少移动次数。
输入输出样例
输入 #1 复制
4
9 8 17 6
输出 #1 复制
3
代码:
#include<bits/stdc++.h>
using namespace std;
int d[101];
int n,s;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&d[i]);
s+=d[i];
}
s/=n;
int k=n;
for(int i=1;i<=n;i++)
{
if(d[i]==s)
{
k--;
}
if(d[i]<s)
{
d[i+1]-=s-d[i];
d[i]=s;
}
if(d[i]>s)
{
d[i+1]+=d[i]-s;
d[i]=s;
}
}
printf("%d\n",k);
return 0;
}