大家都知道小明最喜欢研究跟序列有关的问题了,可是也就因为这样,小明几乎已经玩遍各种序列问题了。可怜的小明苦苦地在各大网站上寻找着新的序列问题,可是找来找去都是自己早已研究过的序列。小明想既然找不到,那就自己来发明一个新的序列问题吧!小明想啊想,终于想出了一个新的序列问题,他欣喜若狂,因为是自己想出来的,于是将其新序列问题命名为“小明序列”。
提起小明序列,他给出的定义是这样的:
①首先定义S为一个有序序列,S={ A1 , A2 , A3 , … , An },n为元素个数 ;
②然后定义Sub为S中取出的一个子序列,Sub={ Ai1 , Ai2 , Ai3 , … , Aim },m为元素个数 ;
③其中Sub满足 Ai1 < Ai2 < Ai3 < … < Aij-1 < Aij < Aij+1 < … < Aim ;
④同时Sub满足对于任意相连的两个Aij-1与Aij都有 ij - ij-1 > d (1 < j <= m, d为给定的整数);
⑤显然满足这样的Sub子序列会有许许多多,而在取出的这些子序列Sub中,元素个数最多的称为“小明序列”(即m最大的一个Sub子序列)。
例如:序列S={2,1,3,4} ,其中d=1;
可得“小明序列”的m=2。即Sub={2,3}或者{2,4}或者{1,4}都是“小明序列”。
当小明发明了“小明序列”那一刻,情绪非常激动,以至于头脑凌乱,于是他想请你来帮他算算在给定的S序列以及整数d的情况下,“小明序列”中的元素需要多少个呢?
Input
输入数据多组,处理到文件结束;
输入的第一行为两个正整数 n 和 d;(1<=n<=10^5 , 0<=d<=10^5)
输入的第二行为n个整数A1 , A2 , A3 , … , An,表示S序列的n个元素。(0<=Ai<=10^5)
Output
请对每组数据输出“小明序列”中的元素需要多少个,每组测试数据输出一行。
Sample Input
2 0
1 2
5 1
3 4 5 1 2
5 2
3 4 5 1 2
Sample Output
2
2
1
思路:延迟更新路径数组,这个刚开始写的时候是i-d<=1的时候更新,其实这时候i点处理过了,下一个处理的是i+1,而且也没有更新i-d的最小值,所有一直错…
代码:
#include<bits/stdc++.h>
#include<stdio.h>
#include<string.h>
#define MAXN 500005
using namespace std;
int res[MAXN],len[MAXN],a[MAXN];
int find(int a,int l,int r)
{
int ans=0;
while (l<=r)
{
int mid=(l+r)/2;
if(res[mid]<a)l=mid+1,ans=mid;
else r=mid-1;
}
return ans+1;
}
int main()
{
int i,n,max,pos,d;
while (scanf("%d %d",&n,&d)!=EOF)
{
memset(res,127,sizeof(res));
memset(len,0,sizeof(len));
for (i=1;i<=n;++i)cin>>a[i];
for (i=1;i<=n;++i)
{
pos=find(a[i],1,n);
len[i]=pos;
if(i-d<1||res[len[i-d]]<=a[i-d])continue;
res[pos]=a[i-d];
}
max=0;
for (i=1;i<=n;++i) if (len[i]>max) max=len[i];
cout<<max<<endl;
}
return 0;
}