gpt-nlp问答合集

问题1:

我是个NLP初学者,最近在阅读文章时我有个疑问。比如我现在有100个句子,我将100个句子通过一个神经网络,从而输出100个维度一致的向量,这个神经网络的作用是使得语义相同的句子输出的向量余弦相似度越大。这个模型不是提前打标签的有监督模型。所以我不明白神经网络模型怎么知道那些句子的语义相似呢,它是怎么操作使得语义相似的句子向量更接近的呢?整个过程是如何通过损失函数来优化模型的呢?

回答1:

在这种情况下,令词嵌入向量表示输入的句子,同时许多 NLP 模型在训练时采用无监督或自监督(self-supervised)学习方法。这并不需要人工标记的语义相似度数据。取而代之的是通过训练语料库(文本集合)中一定程度上保留的语义信息来实现这一目标。这些模型主要有两种类型:1. 预测模型和 2. 计数模型。而其中最典型的代表,比如 Word2Vec 的 Skip-gram 和 CBOW,以及 GloVe。

对于这些模型,训练方法是这样的:

  1. 预测模型(如 Word2Vec 的 Skip-gram 和 CBOW):

    a. Skip-gram:在这种方法中,神经网络尝试预测句子中中心词周围的上下文单词。当它努力预测给定中心词的上下文时,它会学会为相似语义的单词生成相似的词向量。这是因为相似语义的单词通常拥有相似的上下文。在这个过程中,神经网络通过最小化预测上下文词的损失来优化模型。

    b. CBOW:这种方法与 Skip-gram 相反,模型尝试预测上下文中的中心词。在这个过程中,它也学会为相似语义的单词生成相似的词向量。

  2. 计数模型(如 GloVe):

    在这个方法中,根据单词在训练语料库中共同出现的频率来构建共现矩阵。然后,对这个共现矩阵应用低秩近似方法(如SVD),以学习词向量。这些词向量将反映相似语义的单词之间的关系。

现在我们有一些新的方法,如 BERT 和 GPT,这些都是基于 Transformer 架构的自监督方法。在此方法中,通过屏蔽(masking)输入句子中的一部分单词,模型尝试预测这些屏蔽掉的单词。这使得模型能够从输入句子中捕捉潜在的语义信息,从而为这些句子生成相似的表示。

我的随写1:

之前看的论文《Deep Code Search》就是类似于那种对比学习的思想,而现在看的这个《Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks》就是自监督的思想。

问题2:

你好,我最近在学习DQN,我是一名初学者。我想知道,为什么通过强化学习可以使得内嵌神经网络预测Q值越来越准确,请给我详细解释说明这个过程,举个例子说。还有个问题就是,通过贝尔曼方程可以直接得到真实的Q值,那么我为什么还需要神经网络来预测Q值呢?

回答2:

你好!这是很好的问题。我将尽力解释这两个问题的答案。

问题1:为什么通过强化学习可以使得内嵌神经网络预测Q值越来越准确?

答:在深度强化学习中,神经网络在初始阶段,因为参数是随机初始化的,所以对Q值的预测可能并不准确。但是随着网络的训练,神经网络会通过反向传播算法改变其参数,使得预测的Q值能够更加接近实际的Q值。

如同一个玩家玩一个新的游戏,初期可能对游戏环境不熟悉,不清楚哪些动作会带来更好的奖励,但随着他不断地尝试和学习,他会逐渐明白哪些动作是更优的,甚至能预测未来可能的结果。同样,神经网络也能学习到这些,使得预测的Q值越来越准确。

例如在下棋的训练中,初始阶段神经网络可能预测让棋子移动到棋盘的任一位置都有差不多的奖励,但随着经过数千次的棋局训练,神经网络会学习到某些特定的棋步可以带来更大的奖励,也就是说它的预测Q值会更加准确。

问题2:通过贝尔曼方程可以直接得到真实的Q值,那我为什么还需要神经网络来预测Q值呢?

答:贝尔曼方程描述了一个理想的情况,即如果我们知道了整个环境的动态,包括所有的状态转移概率和奖励函数,我们确实可以用贝尔曼方程递归地计算得到真实的Q值。

然而,现实生活中的强化学习问题往往过于复杂,我们没有办法获取到完整的环境信息。比如在自动驾驶的问题中,我们无法获取所有可能的交通场景和汽车的反应。在这种情况下,我们不能直接使用贝尔曼方程计算Q值。

此时,我们可以使用神经网络来“近似”这个Q函数。神经网络可以从数据中学习到隐藏的规律,因此我们可以使用神经网络从经验中学习出一个近似的Q函数,而不需要知道完整的环境动态。神经网络的引入极大地扩展了强化学习的应用范围。

我的随写2:

预测的越来越准,是因为是回收池,回收池中存了很多<状态,动作,奖励,新状态>的四元组数据,这些拿来训练内嵌神经网络。关于损失函数,我们确实需要一个目标Q值来计算神经网络的预测Q值和目标Q值之间的差异,但是这个目标Q值是通过经验回放中收集的样本(状态、动作、奖励和下一个状态)来计算的,而不是通过所有可能的状态转移和奖励来计算的。

问题3:

我是一名NLP初学者,我看有人说使用CLS对应的向量作为当前句子的表示,这是什么意思?CLS不就是一个标识符吗?如果一个句子很长,分词后含有100个词,那么我只取CLS对应的向量,而不管其他99个位置的向量吗?请给我举例解答。此外,我想做的是语义相似度计算,那么我取CLS位置的向量做计算合理吗?

回答3:

在BERT模型中,特殊标识符[CLS]被添加到输入句子的开头,模型经过层叠的自注意力和前馈网络后,[CLS]的位置将融合了整个句子的上下文信息。因此,我们常常将最后一个隐藏层中[CLS]位置的向量作为句子的表示。

注意,这并不是忽视了其他位置的向量,而是在模型的训练过程中,[CLS]这个特殊的向量已经被训练出了对整个句子的代表性。这个代表性是在全局上对所有单元的一种加权,而不是只关注某一部分。因此,取[CLS]向量作为句子的表示是有效的。

举个例子,假设我们有一个典型的BERT输入格式“[CLS] I love NLP [SEP]”,在BERT模型处理后,每个单词(包括[CLS]和[SEP])都会得到一个向量表征,而我们通常会把[CLS]的向量作为整个句子“I love NLP”的向量表征。

至于语义相似度的计算,取[CLS]位置的向量是一种常见的做法。因为像BERT这样的预训练模型,本质上是在理解语句的含义,即"semantics",因此,[CLS]位置的向量可以被认为是捕获了这个语义信息,用它来计算语义相似度是合理的。但是,在实际应用中,你可能还需要根据具体任务调整你的策略,例如,有时也会结合句子中每个词的向量来进行同时考虑。

我得随写3:

实际训练模型的过程中,由于模型的自注意力机制,这个CLS位置会注意到整个句子的所有词,所以最后它的embedding向量相当于融合了整个句子的信息。我们可以使用最后一层的CLS向量作为整个句子的表示。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值