题目
(这是一个 交互式问题 )
给你一个 山脉数组 mountainArr,请你返回能够使得 mountainArr.get(index) 等于 target 最小 的下标 index 值。
如果不存在这样的下标 index,就请返回 -1。
何为山脉数组?如果数组 A 是一个山脉数组的话,那它满足如下条件:
首先,A.length >= 3
其次,在 0 < i < A.length - 1 条件下,存在 i 使得:
A[0] < A[1] < ... A[i-1] < A[i]
A[i] > A[i+1] > ... > A[A.length - 1]
你将 不能直接访问该山脉数组,必须通过 MountainArray 接口来获取数据:
MountainArray.get(k) - 会返回数组中索引为k 的元素(下标从 0 开始)
MountainArray.length() - 会返回该数组的长度
注意:
对 MountainArray.get 发起超过 100 次调用的提交将被视为错误答案。此外,任何试图规避判题系统的解决方案都将会导致比赛资格被取消。
为了帮助大家更好地理解交互式问题,我们准备了一个样例 “答案”:https://leetcode-cn.com/playground/RKhe3ave
,请注意这 不是一个正确答案。
示例 1:
输入:array = [1,2,3,4,5,3,1], target = 3
输出:2
解释:3 在数组中出现了两次,下标分别为 2 和 5,我们返回最小的下标 2。
示例 2:
输入:array = [0,1,2,4,2,1], target = 3
输出:-1
解释:3 在数组中没有出现,返回 -1。
提示:
3 <= mountain_arr.length() <= 10000
0 <= target <= 10^9
0 <= mountain_arr.get(index) <= 10^9
来源:力扣(LeetCode)
二分查找
题目要求我们对get方法的调用不超过100次,本题的数据规模最大为10000,由此我们可以知道本题的算法要求的时间复杂度为logN。
首先先讲解一下二分查找的两种思路
int nums[n]; //需要查找的数组(有序)
int target = a //需要查找的值
int l = 0, r = n - 1;
// 第一种
while(l <= r){
int mid = (l + r) / 2;
if(nums[mid] == target) return mid; //返回下标
if(nums[mid] > target) r = mid - 1;
else l = mid + 1;
}
// 第二种
while(l < r){
int mid = (l + r) / 2;
if(nums[mid] < target) l = mid + 1;
else r = mid
}
if(nums[l] == target) return l;
第一种思路在退出循环以后有 l = r + 1,并且需要在循环体内判断是否查找到目标元素,循环体有三个分支
第二种思路在退出循环后有 l == r,循环体内只有两个分支,在循环体外部判断下标 l 或者 r 对应的元素是否是目标元素
第二种思路的好处是退出循环后一定有 l == r,我们不需要去考虑返回哪一个下标,但对应的也有一个需要特别注意的地方,就是第二种思路的另一种写法
while(l < r){
int mid = (l + r) / 2;
if(nums[mid] > target) r = mid - 1;
else l = mid
}
if(nums[l] == target) return l;
我们思考一种情况,nums = {1,2},target = 2,循环体在执行时首先计算mid = (l + r)/ 2,mid = 0,接下来由于nums[0] < target,程序进入到第二条分支,l = mid,这时我们发现搜索的区间并没有减小,程序将进入死循环。所以在程序中出现 l = mid 这条分支的时候,我们修改mid的取整方式,改为向上取整
mid = (l + r + 1) / 2 //向上取整
对于本题,我们选择使用第二种思路,题目说明山脉数组中的山顶元素唯一,所以我们可以先求出山顶元素,根据山顶元素将山脉数组划分成两个有序的数组,分别进行二分查找。
代码:
/**
* // This is the MountainArray's API interface.
* // You should not implement it, or speculate about its implementation
* class MountainArray {
* public:
* int get(int index);
* int length();
* };
*/
class Solution {
// 查找山顶元素
int findMountainTop(int left, int right, MountainArray& mountainArr, int target){
while(left < right){
int mid = left + (right - left + 1) / 2;
if(mountainArr.get(mid) > mountainArr.get(mid + 1))
//下一轮搜索的区间 [left, mid - 1];
right = mid - 1;
else
//下一轮搜索的区间 [mid, right]
left = mid;
}
return left;
}
// 在升序数组中查找目标元素
int findSortedArray(int left, int right, MountainArray& mountainArr, int target){
while(left < right){
int mid = left + (right - left + 1) / 2;
if(mountainArr.get(mid) > target)
//下一轮搜索的区间 [left, mid - 1]
right = mid - 1;
else
//下一轮搜索的区间 [mid, right]
left = mid;
}
if(mountainArr.get(left) == target) return left;
return -1;
}
// 在降序数组中查找目标元素
int findReverseArray(int left, int right, MountainArray& mountainArr, int target){
while(left < right){
int mid = left + (right - left) / 2;
if(mountainArr.get(mid) > target)
//下一轮搜索的区间 [mid + 1, right]
left = mid + 1;
else
//下一轮搜索的区间 [left, mid]
right = mid;
}
if(mountainArr.get(left) == target) return left;
return -1;
}
public:
int findInMountainArray(int target, MountainArray &mountainArr) {
int left = 0, right = mountainArr.length() - 1;
//查找山顶元素
int top = findMountainTop(left, right, mountainArr, target);
if(mountainArr.get(top) == target) return top;
//由于题目要求最小的下标值,所以我们先在递增部分中查找
int res = findSortedArray(left, top - 1, mountainArr, target);
if(res != -1) return res;
//在递减部分中查找
return findReverseArray(top + 1, right, mountainArr, target);
}
};