1.实现Map接口
2.HashMap的默认初始值为16
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
3.HashMap的默认最大容量为2^30
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
4.负载因子默认为0.75
负载因子=容量/元素总量
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
5.链表和红黑树相互转化的时机
当哈希桶中某条链表长度超过8且桶的个数大于64时,将链表转化为红黑树,否则直接扩容。当红黑树中结点小于6时,又从红黑树转化为链表。
/**
* The bin count threshold for using a tree rather than list for a
* bin. Bins are converted to trees when adding an element to a
* bin with at least this many nodes. The value must be greater
* than 2 and should be at least 8 to mesh with assumptions in
* tree removal about conversion back to plain bins upon
* shrinkage.
*/
//树状阈
static final int TREEIFY_THRESHOLD = 8;
/**
* The bin count threshold for untreeifying a (split) bin during a
* resize operation. Should be less than TREEIFY_THRESHOLD, and at
* most 6 to mesh with shrinkage detection under removal.
*/
//不稳定阈
static final int UNTREEIFY_THRESHOLD = 6;
/**
* The smallest table capacity for which bins may be treeified.
* (Otherwise the table is resized if too many nodes in a bin.)
* Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
* between resizing and treeification thresholds.
*/
//当链表长度超过8,桶的个数超过64时,链表转化为红黑树,否则扩容
static final int MIN_TREEIFY_CAPACITY = 64;
6.哈希桶的结构
哈希桶中的链表是单链表。
//HashMap中的结点结构
/**
* Basic hash bin node, used for most entries. (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;//哈希值
final K key;//键,不可变
V value;//值
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
7.哈希函数
key为空时,返回0号桶
key不为空,返回该key所对应的哈希码。
若key为自定义类型,必须重写hashCode方法。
static final int hash(Object key) {
int h;
//将key的hashcode与key的hashcode右移16位的结果按位异或
/**主要用于当hashmap 数组比较小的时候所有bit都参与运算了
目的是减少碰撞*/
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
获取哈希地址后,计算桶号的方式为:index = (table.length-1)&hash
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//桶号的获取方式:
//index = (table.length ) & hash
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
通过除留余数法方式获取桶号,因为Hash表的大小始终为2的n次幂,因此可以将取模转为位运算操作,提高效率,这就是按照2倍方式扩容的一个原因
8.扩容机制
将cap扩展到大于cap最近的2的n次幂
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
9.构造方法
(1)参数为初始容量,负载因子使用默认值0.75
public HashMap(int initialCapacity){
this(initialCapacity,DEFAULT_LOAD_FACTOR);
}
(2)无参
容量使用默认初始值16,负载因子使用默认值0.75
public HashMap(){
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
(3)参数为初始容量和初始负载因子
public HashMap(int initalCapacity,float loadFactor){
//如果容量小于0,抛出非法参数异常
if(initialCapacity < 0){
throw new IllegalArgumentException("Illegal initial capacity: "+initalCapacity);
}
//若初始值容量大于最大值,使用2^30替换
if(initialCapacity > MAXMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//若负载因子小于0或非浮点数,抛出非法参数异常
if(loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
// 给负载因子和容量赋值,并将容量提升到2的整数次幂
// 注意:构造函数中并没有给
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);//扩容至最近的2的整数次幂
}
/*
注意:
不同于Java7中的构造方法,Java8对于数组table的初始化,并没有直接放在构造器中完成,而是将table数组的构
造延迟到了resize中完成
*/
}
java8在HashMap的构造函数中:并没有开辟空间,而是将开辟空间延迟到第一次插入元素时。
10.根据key获取value
(1)根据key计算出哈希地址,然后用哈希地址在哈希桶中找到与key对应的结点
(2)若结点为null,返回null。HashMap中结点可以为null
(3)若结点不为空,返回该结点中的value
/**
* Implements Map.get and related methods
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
public V get(Object key){
Node<K,V> e;
return (e = getNode(hash(key),key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash,Object key){
Node<K,V>[] tab;
Node<K,V> first,e;
int n;
K k;
//1.检测哈希桶是否为空
//2.检测哈希桶的个数是否大于0,若桶不空,桶的个数肯定不为0
//3.n-1 & hash 得到桶号,且不为null
//4.当前桶是否为空
//1.2.3.4均成立,说明当前桶中有结点,拿到当前桶中第一个结点。
if((tab = table) != null && (n = tab.length) > 0 && (first = [tab[(n-1) & hash)] != null){
//若结点的哈希值与key的哈希值相等,然后再检测key是否相等
//1.若相等,则返回该节点
//可以重写hashcode方法和equals方法
// 比较的是地址
if(first.hash == hash && ((k = first.key) == key ||(key != null && key.equals(k))))
return first;
//若first后还有结点
if((e = first.next) != null){
//检测first是否为TreeNode类型的
//若为TreeNode,此时应在红黑树中好与key对应的结点
if(first instanceof TreeNode)
return ((TreeNde<K,V> first).getTreeNode(hash,key);
//若桶中挂接的是单链表,则按照以下方式查找
//顺着链表的结点一个一个的往下找,找到之后返回
do{
if(e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}while((e = e.next) != null);
}
}
return null;
}
11.检测key是否存在
(1)先通过getNode()获取与key对应的节点
(2)如果节点不为空,则说明存在返回true,否则返回false
(2)时间复杂度:平均为o(1),如果当前key所对应的桶中挂接的链表则进行顺序查找,如果挂接的是红黑树,则按照红黑树的性质查找。
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
12.插入结点
(1)先使用key借助hash函数计算key的哈希地址
(2)将key-value键值对,结合计算出的hash地址插入到哈希桶中
(3)HashMap在插入时,并没有处理线程安全问题,因此HashMap是非线程安全的
(4)红黑树优化链表过长是java8新引进,是基于性能的考虑,当冲突大时,红黑树比链表的效率高,综合表现更好。
public V put(K key,V valye){
return putVal(hash(key),key,value,false,true);
}
final V putVal(int hash,K key,V value,boolean onlyIfAbsent,boolean evict){
Node<K,V>[] tab;
Node<K,V> p;
int n,i;
//若桶是空的,则直接进行扩容
if((tab = table) == null || (n = tab.length) == 0)
n = (table = resize()).length;
//(n-1) & hash 计算桶号,如果当前桶中没有节点,直接插入
//p来记录桶中的第一个结点
if(( p =tab[i = (n-1) & hash]) == null)
tab[i] = new Node(hash,key,value,null);
else{
Node<K,V> e;
K k;
//如果key与桶中的第一个结点相等,不进行插入
if(p.hash == hash &&
((k = p.key ) == key || (key != null && key.equals(k))))
e = p;
else if(p instanceof TreeNode)
//当前桶挂接的是红黑树时,使用红黑树插入结点方法
e = ((TreeNode<K,V>) p).putTreeVal(this,tab,hash,key,value);
else{
//当前桶中挂接的是一个链表
//1.在当前链表中找key
//找到,不插入
//没有找到,构建新节点,然后将其尾插到链表
//检测binCount的计数,binCount记录的是在未插入新节点前链表的节点个数
//新节点插入后,链表长度是否超过TREEIFY_THRESHOLD(树阈值),若超过,又将其转化为红黑树。
for(int binCount = 0; ;++binCount){
if(( e = p.next ) == null){
//p是最后一个节点,说明在链表中未找到key对应的结点
//进行尾插
p.next = new Node(hash,key,value,null);
if(binCount>=TREEIFY_THRESHOLD - 1)
treeifyBin(tab,hash);//将链表转化为树、
break;
}
//如果key已经存在,跳出循环
if(e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果key已经存在,将key所对应的结点中的value替换为参数指定的value,返回旧的value
if( e != null){
V oldValue = e.value;
if(!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if(++size>threshold)
resize();
afterNodeInsertion(evict);
return null;
/*afterNodeAccess和afterNodeInsertion主要是LinkedHashMap实现的,HashMap中给出了该方法,但是并没有实现。
*/
//访问。插入。删除结点后进行一些处理
//linkedHashMap通过重写这3个方法来保证链表的插入删除的有序性
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }
/**
LinkedHashMap:继承了HashMap,在LinkedHashMap中会对以上方法进行重写,以保证存入到LinkedHashMap中的key是有序的,有序不是指自然序列的有序性,而是指元素插入的先后有序性。
**/
}
在java7中,于链表中插入新结点采用头插法,在多线程的情况下会出现死循环
在java8中采用尾插法,解决了头插法在多线程情况下出现的死循环问题,但HashMap在多线程情况下,还是不安全的。
13.LinkedHashMap
底层哈希桶使用的是双向链表
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>
{
/**
* HashMap.Node subclass for normal LinkedHashMap entries.
*/
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
private static final long serialVersionUID = 3801124242820219131L;
/**
* The head (eldest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> head;
/**
* The tail (youngest) of the doubly linked list.
*/
transient LinkedHashMap.Entry<K,V> tail;
/**
* The iteration ordering method for this linked hash map: <tt>true</tt>
* for access-order, <tt>false</tt> for insertion-order.
*
* @serial
*/
// true: 按照访问次序排序-LRU
// false:按照插入次序排序
final boolean accessOrder;
/**
* Constructs an empty <tt>LinkedHashMap</tt> instance with the
* specified initial capacity, load factor and ordering mode.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @param accessOrder the ordering mode - <tt>true</tt> for
* access-order, <tt>false</tt> for insertion-order
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public LinkedHashMap(int initialCapacity,float loadFactor,boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
// ...
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
/**根据以上代码发现,afterNodeInsertion由于removeEldestEntry()所返回的false没有执行意义,所以想要使它有意义就必须重写removeEldestEntry
若使用LinkedHashMap实现一个简单的LRU(Least Recently Used 最近最少使用)Cache。则要重写removeEldestEntry()当超出缓存容器大小时移除最老的首节点。
*/
}
- linkedHashMap继承了HashMap,且实现Map接口
- LinkedHashMap底层使用了哈希桶和双向链表两种结果
- LinkedHashMap需要重写HashMap中的:afterNodeInsertion/afterNodeAccess /afterNodeRemove 等方法
- LinkedHashMap使用迭代器访问时,可以保证一个有序(指的是插入的先后次序)的结果
- 向哈希表中重复插入某个键的时候,不会影响到原来的有序性。
- LinkedHashMap可以作为LRU使用,但要在重写removeEldestEntry方法的前提下。
14.删除key
删除成功:返回删除的key的value
删除失败:返回null
public V remove(Object key){
Node<K,V> e;
return (e = removeNode(hash(key),key,null,false,true)) == null ? null:e.value;
}
final Node<K,V> removeNode(int hash,Object key,Object value,boolean value,boolean matchValue,boolean movable){
Node<K,V>[] tab;
Node<K,V> p;
int n,index;
//检测哈希表是否存在
//index = (n-1)&hash获取桶号
//使用p记录当前桶中的第一个节点,如果桶中没有结点,返回null
if((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n-1)&hash]) != null){
Node<K,V> node = null,e;
K k;
V v;
//如果第一个结点为key,返回,使用node记录
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 如果当前桶下是红黑树,在红黑树中查找,结果用node记录
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do{
if(e.hash == hash && ((k = e.key) == key || (key!=null && key.equals(k)))){
node = e;
break;
}
p = e;
}while((e = e.next) != null);
}
}
// node不为空,在HashMap中找到了
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
// 如果节点在红黑树中,将其删除
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
// 如果节点是链表中第一个节点,将当前链表中下一个节点地址放在桶中
else if (node == p)
tab[index] = node.next;
else
p.next = node.next; // 非第一个节点
++modCount;
--size;
// LinkedHashMap使用
afterNodeRemoval(node);
// 删除成功,返回原节点
return node;
}
}
// 删除失败返回空
return null;
}
15.resize扩容
java8中的扩容,不是简单的将原数组中的每一个元素取出进行重写hash,而是做移位检测。
扩容:
- 计算新容量大小
- 开辟新空间
- 将旧桶中的元素转移到新哈希桶中。
- 传统做法:从旧桶中取node ,重新计算node在新桶中的位置
- java8中:拿到1个node就知道它在新桶中的位置:原因:容量是2的整数次幂
可以直接检测扩容后的那一位是否是1.
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 如果当前哈希桶容量超过最大值2^30,直接返回旧哈希桶大小
// 到达上线 threshold 设置最大阈值返回 表示之后就不再扩容了,随便存,随便hash冲
// 突去,就这么大,无限增加红黑树节点了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 按照两倍扩容后,如果容量没有达到上限
// 并且旧容量已经超过16
// newCap翻倍,则按照两倍的方式扩容
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 下一次扩容时参考,达到该阈值则扩容
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 将新容量设置为默认值16
// 将扩容阈值设置为0.75*16
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果新阈值为0,按照新容量的大小重新计算下一次扩容时的阈值
// 计算方式:采用新容量 * 负载因子
// 即扩容的时机为:当元素个数超过阈值时则扩容
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
// 如果新容量和阈值都是在2^30以内,下一次库哦哦荣的阈值则为ft
// 否则改为最大值
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
// 更新下次扩容的上线
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// // 申请更多的桶,将旧哈希桶中节点转移到新哈希桶中
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
16.HashMap常考问题
(1)如果new HashMap(19),bucket数组多大?
HashMap的bucket 数组大小一定是2的幂,如果new的时候指定了容量且不是2的幂,实际容量会是最接近(大于)指定容量的2的幂,比如 new HashMap<>(19),比19大且最接近的2的幂是32,实际容量就是32。
(2)HashMap什么时候开辟bucket数组占用内存?
HashMap在new 后并不会立即分配bucket数组,而是第一次put时初始化,类似ArrayList在第一次add时分配空间
(3)HashMap何时扩容?
HashMap 在 put 的元素数量大于 Capacity * LoadFactor(默认16 * 0.75) 之后会进行扩容
(4)当两个对象的hashcode相同时会发生什么?
因为hashcode相同,所以它们的bucket位置相同,‘碰撞’会发生
(在深入解释)
(5)如果两个键的hashcode相同,你如何获取值对象?
遍历与hashCode值相等时相连的链表,直到相等或者为null
(6)你了解重新调整HashMap大小存在什么问题吗?
当hashMap中的节点数超过阈值的时候,就会自动扩容,扩容的时候就会调整hashMap的大小,一旦调整了hashMap的大小就会导致之前的hashCode计算出来的hash表中下标无效,所以所有的节点都需要重新hash运算,结果就是带来时间上的浪费。因此我们要尽量避免hashMap调整大小,所以我们使用hashMap的时候要给hashMap设置一个默认值,这个默认值要大于我们hashMap中存放的节点数。
(7)containsKey()的时间复杂度:O(1)(链表)或O(logN)(红黑树)