- 博客(5)
- 收藏
- 关注
原创 最短加法链问题和盒子里的气球放置顺序问题
最短加法链问题是一个经典的算法问题,它的目标是找到一种方法,用最少的乘法次数计算出一个数的幂次方。这个问题可以转化为寻找一个正整数的最短加法链,
2024-11-10 11:33:36
1811
1
原创 在电路布线算法中使用“日”字走法
每个节点都有一个 f_score 值,它是 g_score(从起点到当前节点的实际代价)和启发式函数 h_score(从当前节点到终点的估计代价)的总和。5.递归搜索:对于每个可能的移动方向,如果该方向是有效的并且没有在之前的路径中出现过,函数会递归地调用自身来探索这个方向。7.路径标记:如果找到路径,代码会将路径上的点在迷宫数组中用数字2标记,表示路径。7.返回路径:如果找到路径,函数返回路径列表;8.路径标记:如果找到路径,代码会将路径上的点在迷宫数组中用数字2标记,表示路径。
2024-10-22 21:44:43
786
1
原创 利用图的m着色问题与图的最大团问题之间的关系改进最大团问题的上界
图的m着色问题:给定一个图 G 和一个整数 m,判断是否可以用 m 种颜色对图 G 的顶点进行着色,使得任意两个相邻的顶点颜色不同。这个问题是NP完全问题。2.图的最大团问题:给定一个图 G,找到 G 中最大的完全子图(即团),完全子图中的任意两个顶点都相连。最大团问题同样是NP完全问题。这两个问题之间的联系在于,如果一个图可以用 m 种颜色进行着色,那么图中任意一个顶点的度数(即与之相连的边数)都不会超过 m−1。这是因为相邻的顶点必须使用不同的颜色。
2024-10-16 16:01:45
389
1
原创 DAG、Dijkstra、Bellmen-ford原理、异同、应用
DAG作为一种图的特殊形式,主要用于表示依赖关系;Dijkstra算法适用于求解无负权重边的图的最短路径问题;Bellman-Ford算法则可以处理更一般的情况,包括负权重边,但不能有负权重环。理解它们的原理和适用场景对于解决实际问题至关重要。
2024-10-09 11:00:41
1542
2
原创 Centos7下安装Python3.8
一:打开/usr/local目录在Linux系统下,路径/usr/local相当于C:/Progrem Files/,通常安装软件时便安装到此目录下。执行命令:cd /usr/local第二步:安装相关依赖包和编译环境yum install zlib-devel bzip2 bzip2-devel readline-devel sqlite sqlite-devel openssl-devel xz xz-devel libffi-devel如果不安装相关依赖包,在使用pip安装pyth
2020-07-03 17:56:25
3632
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅