DAG、Dijkstra算法和Bellman-Ford算法都是图论中的重要概念和算法,它们在解决不同类型的最短路径问题中扮演着关键角色。下面将分别介绍它们的原理、异同和应用。
DAG(有向无环图)
原理:
1.有向:图中的每条边都有一个方向,即从一个顶点(节点)指向另一个 顶点。这意味着边是有方向性的,通常用箭头表示。
2.无环:图中不存在任何从一个顶点出发,经过一系列边后又回到该顶点 的路径。换句话说,DAG中不存在循环或环路。
代码:
from airflow.models import DAG
from airflow.operators.bash_operator import BashOperator
from datetime import datetime
# 定义DAG参数
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2023, 1, 1),
'email': ['airflow@airflow.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
# 创建DAG实例
dag = DAG(
dag_id='example_dag',
default_args=default_args,
description='A simple DAG',
schedule_interval=timedelta(days=1),
)
# 定义任务
task1 = BashOperator(
task_id='print_date',
bash_command='date',
dag=dag,
)
task2 = BashOperator(
task_id='sleep',
bash_command='sleep 5'