四维偏序裸题
给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数。
关键点在于第二层要处理的是234维,按第二维排序,第三维CDQ,第四维树状数组,第二层CDQ与普通CDQ的不同之处仅在于不仅要判断第三维的大小关系,还要判断第一维的大小关系。
#include<bits/stdc++.h>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const ll maxn=5e4+10;
struct node{
ll x,y,z,id;
}a[maxn];
ll Tree[maxn];
ll ans;
bool cmpx(node a,node b){
return a.x==b.x?a.y==b.y?a.z==b.z?a.id<b.id:a.z<b.z:a.y<b.y:a.x<b.x;
}
bool cmpy(node a,node b){
return a.y==b.y?a.z==b.z?a.x==b.x?a.id<b.id:a.x<b.x:a.z<b.z:a.y<b.y;
}
void add(ll x,ll val){
while(x<maxn){
Tree[x]+=val;
x+=lowbit(x);
}
}
ll query(ll x){
ll sum=0;
while(x>0){
sum+=Tree[x];
x-=lowbit(x);
}
return sum;
}
void CDQ2(ll l,ll r,ll m1){
if(l==r)return;
ll mid=(l+r)>>1;
CDQ2(l,mid,m1);
CDQ2(mid+1,r,m1);
sort(a+l,a+mid+1,cmpy);
sort(a+mid+1,a+r+1,cmpy);
ll j=l;
for(ll i=mid+1;i<=r;i++){
while(j<=mid&&a[j].y<a[i].y){
if(a[j].id<=m1)
add(a[j].z,1);
j++;
}
if(a[i].id>m1)
ans+=query(a[i].z-1);
}
for(ll i=l;i<j;i++){
if(a[i].id<=m1)
add(a[i].z,-1);
}
}
void CDQ(ll l,ll r){
if(l==r)return;
ll mid=(l+r)>>1;
CDQ(l,mid);
CDQ(mid+1,r);
sort(a+l,a+r+1,cmpx);
CDQ2(l,r,mid);
}
int main(){
ll n;
scanf("%lld",&n);
for(ll i=1;i<=n;i++){
scanf("%lld",&a[i].x);
a[i].id=i;
}
for(ll i=1;i<=n;i++){
scanf("%lld",&a[i].y);
}
for(ll i=1;i<=n;i++){
scanf("%lld",&a[i].z);
}
CDQ(1,n);
printf("%lld\n",ans);
}