LCA+最大生成树 货车运输(洛谷 P1967)

货车运输

题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。

现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入格式

第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。

接下来 m 行每行三个整数 x,y,z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。

注意: x ≠ \not= =y 两座城市之间可能有多条道路 。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x,y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,保证 x ≠ \not= =y

输出格式

共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。
如果货车不能到达目的地,输出 -1。


这题可以转化为求两点之间的最小最大路径;

先转化为最大生成树,个人认为如果你不知道lca可以维护两点之间最小路径,那么是不会想到转化为最大生成树的;我就不知道;

之前学的lca只知道可以求两点之间的距离(树上就是最小距离),可以求公共祖先;没有做过这种题目;

自然不可能想到;

如果知道了这个,那么转化为最大生成树理所当然,这里讲一下怎么维护两点之间的最小路径;

首先知道lca的倍增思路也是一个区间思路,f[i][j]表示 i 结点往上走 2^j 个结点的结点;

那么是不是可以设一个mx[i][j],表示 i 结点到 i-2^j 结点的路径最小值呢?这是不是就是一个区间思路,而且这个总路径上面区间不可能有重复;

代码:

#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,LL>
#define ls k<<1
#define rs k<<1|1
#define inf 0x3f3f3f3f
using namespace std;
const int N=10100;
const int M=50100;
const int mod=1e9;
int n,m,q,head[N],cnt1,cnt2,lg[N],dep[N],f[N][40],mx[N][40],fa[N];
set<int>se;//存根 
int find(int p){
	if(p==fa[p]) return p;
	return fa[p]=find(fa[p]); 
}
struct Node{int p,q,w;}edge1[M*2];
struct Nod{int to,nex,w;}edge2[M*2];
void add1(int p,int q,int w){edge1[cnt1].w=w,edge1[cnt1].p=p,edge1[cnt1].q=q,cnt1++;}
void add2(int p,int q,int w){edge2[cnt2].w=w,edge2[cnt2].to=q,edge2[cnt2].nex=head[p],head[p]=cnt2++;} 
bool cmp(Node p,Node q){return p.w>q.w;}
void krus(){
	for(int i=1;i<=n;i++) fa[i]=i;
	sort(edge1+1,edge1+1+cnt1,cmp);
	for(int i=1;i<=cnt1;i++){
		int u=find(edge1[i].p);
		int v=find(edge1[i].q);
		if(u==v) continue;
		fa[u]=v;
		add2(edge1[i].p,edge1[i].q,edge1[i].w),add2(edge1[i].q,edge1[i].p,edge1[i].w);
	}
}
void dfs1(int p,int q){
	if(q==0) mx[p][0]=inf; 
	for(int i=head[p];~i;i=edge2[i].nex){
		if(edge2[i].to!=q){
			mx[edge2[i].to][0]=edge2[i].w;//主要是赋这个初值 
			dfs1(edge2[i].to,p);
		}
	}
} 
void dfs2(int p,int q){
	dep[p]=dep[q]+1,f[p][0]=q;
	for(int i=1;i<=lg[dep[p]];i++){
		mx[p][i]=min(mx[p][i-1],mx[f[p][i-1]][i-1]);
		f[p][i]=f[f[p][i-1]][i-1];
	}
	for(int i=head[p];~i;i=edge2[i].nex){
		if(edge2[i].to!=q) dfs2(edge2[i].to,p);
	}
}
int lca(int x,int y){
	if(find(x)!=find(y)) return -1;
	int ans=inf;
	if(dep[x]<dep[y]) swap(x,y);
	while(dep[x]>dep[y]) ans=min(ans,mx[x][lg[dep[x]-dep[y]]-1]),x=f[x][lg[dep[x]-dep[y]]-1];
	if(x==y) return ans; 
	for(int k=lg[dep[x]]-1;k>=0;k--){
		if(f[x][k]!=f[y][k]){
			ans=min(ans,min(mx[x][k],mx[y][k]));
			x=f[x][k],y=f[y][k];
		}
	}

	ans=min(ans,min(mx[x][0],mx[y][0]));
	return ans;
}
int main(){
	memset(head,-1,sizeof(head));
	memset(mx,inf,sizeof(mx));
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		add1(x,y,z),add1(y,x,z);
	}
	krus();
	for(int i=1;i<=n;i++) lg[i]=lg[i-1]+(1<<lg[i-1]==i);
	for(int i=1;i<=n;i++){
		if(se.count(find(i))) continue;
		se.insert(find(i));
		dfs1(i,0);//lca初始化 
		dfs2(i,0);//lca初始化 
	}
	scanf("%d",&q);
	while(q--){
		int x,y;
		scanf("%d%d",&x,&y);
		printf("%d\n",lca(x,y));
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LCA+路径压缩的方式可以用于求解树上的桥,具体实现步骤如下: 1. 对于树上每个节点,记录其在树中的深度(或者高度)以及其父亲节点。 2. 对于每个节点,记录其在树上的最小深度(或最小高度)以及其所在子树中深度最小的节点。 3. 对于每边(u, v),设u的深度小于v的深度(或者高度),则如果v的子树中没有深度小于u的节点,则(u, v)是桥。 具体的实现过程如下: 首先,我们需要对树进行预处理,求出每个节点的深度以及其父亲节点。可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来实现。在这里我们使用DFS来实现: ```c++ vector<int> adj[MAX_N]; // 树的邻接表 int n; // 树的节点数 int dep[MAX_N], fa[MAX_N]; // dep[i]表示节点i的深度,fa[i]表示节点i的父亲节点 void dfs(int u, int f, int d) { dep[u] = d; fa[u] = f; for (int v : adj[u]) { if (v != f) { dfs(v, u, d + 1); } } } ``` 接下来,我们需要计算每个节点所在子树中深度最小的节点。我们可以使用LCA(最近公共祖先)的方法来实现。具体来说,我们可以使用倍增算法来预处理出每个节点的2^k级祖先,并且在查询LCA时使用路径压缩的方式优化时间复杂度。这里我们不展开讲解LCA和倍增算法的细节,如果你对此感兴趣,可以参考其他资料进行学习。 ```c++ const int MAX_LOG_N = 20; // log2(n)的上取整 int anc[MAX_N][MAX_LOG_N]; // anc[i][j]表示节点i的2^j级祖先 int mn[MAX_N]; // mn[i]表示节点i所在子树中深度最小的节点 void precompute() { // 预处理anc数组 for (int j = 1; j < MAX_LOG_N; j++) { for (int i = 1; i <= n; i++) { if (anc[i][j - 1] != -1) { anc[i][j] = anc[anc[i][j - 1]][j - 1]; } } } // 计算mn数组 for (int i = 1; i <= n; i++) { mn[i] = i; for (int j = 0; (1 << j) <= dep[i]; j++) { if ((dep[i] & (1 << j)) != 0) { mn[i] = min(mn[i], mn[anc[i][j]]); i = anc[i][j]; } } } } ``` 最后,我们可以使用LCA+路径压缩的方式来判断每边是否为桥。具体来说,对于每边(u, v),我们需要判断v的子树中是否存在深度小于u的节点。如果存在,则(u, v)不是桥,否则(u, v)是桥。 ```c++ bool is_bridge(int u, int v) { if (dep[u] > dep[v]) swap(u, v); if (mn[v] != u) return true; // 子树中存在深度小于u的节点 return false; // 子树中不存在深度小于u的节点 } ``` 完整代码如下:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值