[练习][洛谷1613]倍增+Floyd 跑路

本文介绍了如何运用倍增和Floyd算法解决洛谷1613题,该题要求在给定的有向图中找到从起点到终点的最短路径,并限制每秒移动距离为2^k千米。通过分析数据范围,作者选择暴力循环求解倍增部分,然后使用Floyd算法求最短路,最终给出问题的解决方案。
摘要由CSDN通过智能技术生成

题目背景
洛谷1613

题目描述
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

输入格式
第一行两个整数n,m,表示点的个数和边的个数。

接下来m行每行两个数字u,v,表示一条u到v的边。

输出格式
一行一个数字,表示到公司的最少秒数。

样例数据
输入

4 4
1 1
1 2
2 3
3 4

输出

1

备注
【样例说明】
1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

【数据范围】

50%的数据满足最优解路径长度<=1000;

100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。

分析:刚刚看到这道题,嗯,求最短路?dijkstra、SPFA走你!诶?好像不对,这个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值