已知有两个整数A、B, 求A与B的最小公倍数

求解公式:A与B的最小公倍数=(A×B)÷(A与B的最大公约数)

如何求解最大公约数:欧几里得算法(辗转相除法)
欧几里得算法基于下面这个定理:

设a、b均为正整数,则**gd(a,b)= gcd(b,a % b)**
证明:设a=kb+r,其中k和r分别为a除以b得到的商和余数。
则有r=a-kb成立。
设d为a和b的一个公约数,
那么由r=a-kb,得d也是r的一个约数。
因此d是b和r的一个公约数。
又由r=a%b,得d为b和a%b的一个公约数。
因此d既是a和b的公约数,也是b和a%b的公约数。
由d的任意性,得a和b的公约数都是b和a%b的公约数。
由a=kb+r,同理可证b和a%b的公约数都是a和b的公约数。
因此a和b的公约数与b和a%b的公约数全部相等,故其最大公约数也相等, 即有gcd(a,b)= gcd(b,a %b)。
证毕。

由上面这个定理可以发现,如果a<b,那么定理的结果就是将a和b交换;女 那么通过这个定理总可以将数据规模变小,并且减小得非常快。这样似乎可以很快 只是还需要一个东西:递归边界,即数据规模减小到什么程度使得可以算出结果来。众所周知:0和任意一个整数a的最大公约数都是a(注意:不是0),这个结论就 退出归边界。由此很容易想到将其写成递归的形式,因为递归的两个关键已经得到:
①递归式:gcd(a,b)= gcd(b, a%b)。
②递归边界:gcd(a,0)=a。

求解最大公约数的代码:

 private static int  gcd(int a,int b){
        if(b==0){
            return a;
        }else return gcd(b,a%b);
    }

完整代码:

import java.util.Scanner;
public class Main {
    public static void main(String[] args) {
        Scanner scanner=new Scanner(System.in);
        int A=scanner.nextInt();
        int B=scanner.nextInt();
        int C=0;
        C=(A*B)/gcd(A,B);
        System.out.println(C);
    }
    private static int  gcd(int a,int b){
        if(b==0){
            return a;
        }else return gcd(b,a%b);
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值