cf思维题(判断能不能顺时针或者逆时针构成环)

Circle of Students

There are nn students standing in a circle in some order. The index of the ii-th student is pipi. It is guaranteed that all indices of students are distinct integers from 11 to nn (i. e. they form a permutation).

Students want to start a round dance. A clockwise round dance can be started if the student 22 comes right after the student 11 in clockwise order (there are no students between them), the student 33 comes right after the student 22 in clockwise order, and so on, and the student nn comes right after the student n−1n−1 in clockwise order. A counterclockwise round dance is almost the same thing — the only difference is that the student ii should be right after the student i−1i−1 in counterclockwise order (this condition should be met for every ii from 22 to nn).

For example, if the indices of students listed in clockwise order are [2,3,4,5,1][2,3,4,5,1], then they can start a clockwise round dance. If the students have indices [3,2,1,4][3,2,1,4] in clockwise order, then they can start a counterclockwise round dance.

Your task is to determine whether it is possible to start a round dance. Note that the students cannot change their positions before starting the dance; they cannot swap or leave the circle, and no other student can enter the circle.

You have to answer qq independent queries.

Input
The first line of the input contains one integer qq (1≤q≤2001≤q≤200) — the number of queries. Then qq queries follow.

The first line of the query contains one integer nn (1≤n≤2001≤n≤200) — the number of students.

The second line of the query contains a permutation of indices p1,p2,…,pnp1,p2,…,pn (1≤pi≤n1≤pi≤n), where pipi is the index of the ii-th student (in clockwise order). It is guaranteed that all pipi are distinct integers from 11 to nn (i. e. they form a permutation).

Output
For each query, print the answer on it. If a round dance can be started with the given order of students, print “YES”. Otherwise print “NO”.

Example
input
5
4
1 2 3 4
3
1 3 2
5
1 2 3 5 4
1
1
5
3 2 1 5 4
output
YES
YES
NO
YES
YES

题意:给你n个数字看能不能围成一个顺时针或者逆时针的圆环。
思路:每个数字与上一个数字差的绝对值必定为1或者n-1才能构成圆环自己画个图就明白了。

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
using namespace std;
 
int x, y;
int a[205];
int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		memset(a, 0, sizeof(a));
		int n;
		scanf("%d", &n);
		for (int i = 0; i < n; i++)
		{
			scanf("%d", &a[i]);
		}
		int flag = 0;
		for (int i = 1; i <=n-1; i++)
		{
			x = abs(a[i] - a[i -1]);
			if (x != 1 && x != n - 1)
			{
				flag = 1; break;
			}
		}
		if (flag)
		{
			printf("NO\n");
		}
		else
		{
			printf("YES\n");
		}
	}
 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值