题目:输入两个递增的链表,单个链表的长度为n,合并这两个链表并使新链表中的节点仍然是递增排序的。
解法一:排序法
思路:先构造一个集合,存储两个链表的值,然后对该集合排序,遍历排序后的集合构造新链表
最容易想到,当然时间复杂度空间复杂度也最高
public ListNode Merge(ListNode list1, ListNode list2) {
if(list1==null){
return list2;
}
if(list2==null){
return list1;
}
ArrayList<Integer> list = new ArrayList<>();
while(list1!=null){
list.add(list1.val);
list1=list1.next;
}
while(list2!=null){
list.add(list2.val);
list2=list2.next;
}
Collections.sort(list);
ListNode result = new ListNode(list.get(0));
ListNode temp = result;
for(int i=1;i<list.size();i++){
temp.next=new ListNode(list.get(i));
temp=temp.next;
}
return result;
}
复杂度分析:假设两个链表的长度之和为k
时间复杂度:O(klogk),各遍历链表一次,一次快排,遍历集合一次O(k)+O(klogk)+O(k)
空间复杂度:O(klogk),集合存储遍历的k个链表节点,一次快排O(k)+O(klogk)
解法二:迭代
构造一个新链表,然后在循环中对两个链表的头结点进行比较,将值较小的链表追加到新链表的末尾,同时将值较小的链表和新链表向后迭代。一个链表遍历结束后,剩余的链表都大于新链表的最大值,即将剩余的链表追加到新链表末尾即可。
public ListNode Merge(ListNode list1, ListNode list2) {
if (list1 == null || list2 == null) {
return list1 == null ? list2 : list1;
}
ListNode result = new ListNode(0);
ListNode temp = result;
while (list1 != null && list2 != null) {
if (list1.val < list2.val) {
temp.next = list1;
list1 = list1.next;
} else {
temp.next = list2;
list2 = list2.next;
}
temp = temp.next;
}
if (list1 == null || list2 == null) {
temp.next = list1 == null ? list2 : list1;
}
return result.next;
}
复杂度分析:假设两个链表的长度之和为k
时间复杂度:O(k),各遍历链表一次O(k)
空间复杂度:O(1),不涉及额外内存空间
解法三:递归
比较两个链表的头结点,然后对链表的下一个节点进行递归,递归的返回值作为链表的下一个节点。
public ListNode Merge(ListNode list1, ListNode list2) {
if (list1 == null || list2 == null) {
return list1 == null ? list2 : list1;
}
if (list1.val < list2.val) {
list1.next = Merge(list1.next, list2);
return list1;
} else {
list2.next = Merge(list1, list2.next);
return list2;
}
}
代码执行过程分析:
假设list1=1,3,list2=2,4
第一次递归list1.next = Merge(3, (2,4));
第二次递归list2.next = Merge(3,4);
第三次递归list1.next = Merge(null,4)
返回的是4,即list2,回到第三次递归,即list1.next=4,list当前节点为3。返回链表为(3,4)。
回到第二次递归,list2.next =(3,4),当前list2=(2,4),操作过后list2=(2,3,4)
返回第一次递归,list1.next =(2,3,4),当前list1=(1,3),操作之后list1=(1,2,3,4),返回list1
复杂度分析:假设两个链表的长度之和为k
时间复杂度:O(k),各遍历链表一次O(k)
空间复杂度:O(1),不涉及额外内存空间
总结:
涉及数据结构:链表、集合
涉及算法:迭代、递归