# 量化交易回测系统
这是一个基于Python的量化交易回测系统,支持多因子选股、回测分析和报告生成。
## 功能特点
- **多因子选股**:支持RSI、波动率、动量等多个技术因子,可自定义因子权重
- **数据管理**:使用SQLite数据库存储股票数据,支持历史数据的导入和管理
- **回测分析**:支持自定义回测周期、调仓周期和选股数量
- **性能评估**:计算年化收益率、波动率、夏普比率、最大回撤等指标
- **可视化报告**:生成包含交易历史、性能指标和投资组合价值变化图的HTML报告
## 系统架构
- `database.py`: 数据库管理模块,负责数据的存储和检索
- `factor_model.py`: 因子模型模块,实现多因子选股策略
- `backtest.py`: 回测模块,实现回测逻辑和报告生成
- `data_loader.py`: 数据导入模块,用于从外部源导入股票数据
- `main.py`: 主程序,整合各个模块实现完整的回测流程
## 安装步骤
1. 克隆项目到本地:
git clone [项目地址]
https://github.com/swzyfzl/Simple-multi-factor-stock-selection-model
2. 安装依赖包:
pip install -r requirements.txt
3. 初始化数据库:
python data_loader.py
## 使用方法
1. **数据准备**:
- 运行`data_loader.py`导入股票数据
- 确保数据库中有足够的股票数据用于回测
2. **因子配置**:
- 在`main.py`中配置因子模型
- 可以添加或修改因子及其权重
3. **回测参数设置**:
- 设置回测周期(默认最近一年)
- 设置调仓周期(默认20个交易日)
- 设置选股数量(默认3只股票)
4. **运行回测**:
python main.py
5. **查看结果**:
- 回测结果将显示在控制台
- 详细的回测报告将生成在`backtest_report.html`文件中
这样,你就完成一个稳定亏钱的多因子选股模型的框架搭建啦。



2450

被折叠的 条评论
为什么被折叠?



