一个简单的多因子选股回测模型框架

部署运行你感兴趣的模型镜像

# 量化交易回测系统

这是一个基于Python的量化交易回测系统,支持多因子选股、回测分析和报告生成。

## 功能特点

- **多因子选股**:支持RSI、波动率、动量等多个技术因子,可自定义因子权重

- **数据管理**:使用SQLite数据库存储股票数据,支持历史数据的导入和管理

- **回测分析**:支持自定义回测周期、调仓周期和选股数量

- **性能评估**:计算年化收益率、波动率、夏普比率、最大回撤等指标

- **可视化报告**:生成包含交易历史、性能指标和投资组合价值变化图的HTML报告

## 系统架构

- `database.py`: 数据库管理模块,负责数据的存储和检索

- `factor_model.py`: 因子模型模块,实现多因子选股策略

- `backtest.py`: 回测模块,实现回测逻辑和报告生成

- `data_loader.py`: 数据导入模块,用于从外部源导入股票数据

- `main.py`: 主程序,整合各个模块实现完整的回测流程

## 安装步骤

1. 克隆项目到本地:

   git clone [项目地址]

https://github.com/swzyfzl/Simple-multi-factor-stock-selection-model

2. 安装依赖包:

   pip install -r requirements.txt

3. 初始化数据库:

   python data_loader.py

## 使用方法

1. **数据准备**:

   - 运行`data_loader.py`导入股票数据

   - 确保数据库中有足够的股票数据用于回测

2. **因子配置**:

   - 在`main.py`中配置因子模型

   - 可以添加或修改因子及其权重

3. **回测参数设置**:

   - 设置回测周期(默认最近一年)

   - 设置调仓周期(默认20个交易日)

   - 设置选股数量(默认3只股票)

4. **运行回测**:

   python main.py

5. **查看结果**:

   - 回测结果将显示在控制台

   - 详细的回测报告将生成在`backtest_report.html`文件中

这样,你就完成一个稳定亏钱的多因子选股模型的框架搭建啦。

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值