> KNN 工作原理
1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
1. 计算新数据与样本数据集中每条数据的距离。
2. 对求得的所有距离进行排序(从小到大,越小表示越相似)。
3. 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。
> KNN 算法特点
```
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
```
def classify0(inX, dataSet, labels, k):
"""
Desc:
kNN 的分类函数
Args:
inX -- 用于分类的输入向量/测试数据
dataSet -- 训练数据集的 features
labels -- 训练数据集的 labels
k -- 选择最近邻的数目
Returns:
sortedClassCount[0][0] -- 输入向量的预测分类 labels
注意:labels元素数目和dataSet行数相同;程序使用欧式距离公式.
预测数据所在分类可在输入下列命令
kNN.classify0([0,0], group, labels, 3)
"""
dataSetSize = dataSet.shape[0]
# tile生成和训练样本对应的矩阵,并与训练样本求差
"""
tile: 列-3表示复制的行数, 行-1/2表示对inx的重复的次数
In [8]: tile(inx, (3, 1))
Out[8]:
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
In [9]: tile(inx, (3, 2))
Out[9]:
array([[1, 2, 3, 1, 2, 3],
[1, 2, 3, 1, 2, 3],
[1, 2, 3, 1, 2, 3]])
"""
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
"""
欧氏距离: 点到点之间的距离
第一行: 同一个点 到 dataSet 的第一个点的距离。
第二行: 同一个点 到 dataSet 的第二个点的距离。
...
第N行: 同一个点 到 dataSet 的第N个点的距离。
[[1,2,3],[1,2,3]]-[[1,2,3],[1,2,0]]
(A1-A2)^2+(B1-B2)^2+(c1-c2)^2
"""
# 取平方
sqDiffMat = diffMat ** 2
# 将矩阵的每一行相加
sqDistances = sqDiffMat.sum(axis=1)
# 开方
distances = sqDistances ** 0.5
# 根据距离排序从小到大的排序,返回对应的索引位置
# argsort() 是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y。
# print 'distances=', distances
sortedDistIndicies = distances.argsort()
# print 'distances.argsort()=', sortedDistIndicies
classCount = {}
for i in range(k):
# 找到该样本的类型
voteIlabel = labels[sortedDistIndicies[i]]
# 在字典中将该类型加一
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
# a=[('b',2),('a',1),('c',0)] b=sorted(a,key=operator.itemgetter(1))
#>>>b=[('c',0),('a',1),('b',2)] 可以看到排序是按照后边的0,1,2进行排序的,而不是a,b,c
# b=sorted(a,key=operator.itemgetter(0))
#>>>b=[('a',1),('b',2),('c',0)] 这次比较的是前边的a,b,c而不是0,1,2
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]