KNN近邻算法

本文深入探讨了KNN(K-Nearest Neighbors)算法的工作原理,包括通过计算新数据与训练样本间的距离,选取最接近的k个邻居进行分类。KNN算法具有精度高、对异常值不敏感的优点,但同时面临计算复杂度和空间复杂度高的问题。文中还提供了一个实际的KNN分类函数实现,用于演示如何运用欧式距离进行分类。
摘要由CSDN通过智能技术生成


> KNN 工作原理

1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
    1. 计算新数据与样本数据集中每条数据的距离。
    2. 对求得的所有距离进行排序(从小到大,越小表示越相似)。
    3. 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。

> KNN 算法特点

```
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
```

def classify0(inX, dataSet, labels, k):
    """
    Desc:
        kNN 的分类函数
    Args:
        inX -- 用于分类的输入向量/测试数据
        dataSet -- 训练数据集的 features
        labels -- 训练数据集的 labels
        k -- 选择最近邻的数目
    Returns:
        sortedClassCount[0][0] -- 输入向量的预测分类 labels

    注意:labels元素数目和dataSet行数相同;程序使用欧式距离公式.

    预测数据所在分类可在输入下列命令
    kNN.classify0([0,0], group, labels, 3)
    """

    dataSetSize = dataSet.shape[0]
    # tile生成和训练样本对应的矩阵,并与训练样本求差
    """
    tile: 列-3表示复制的行数, 行-1/2表示对inx的重复的次数

    In [8]: tile(inx, (3, 1))
    Out[8]:
    array([[1, 2, 3],
        [1, 2, 3],
        [1, 2, 3]])

    In [9]: tile(inx, (3, 2))
    Out[9]:
    array([[1, 2, 3, 1, 2, 3],
        [1, 2, 3, 1, 2, 3],
        [1, 2, 3, 1, 2, 3]])
    """
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    """
    欧氏距离: 点到点之间的距离
       第一行: 同一个点 到 dataSet 的第一个点的距离。
       第二行: 同一个点 到 dataSet 的第二个点的距离。
       ...
       第N行: 同一个点 到 dataSet 的第N个点的距离。

    [[1,2,3],[1,2,3]]-[[1,2,3],[1,2,0]]
    (A1-A2)^2+(B1-B2)^2+(c1-c2)^2
    """
    # 取平方
    sqDiffMat = diffMat ** 2
    # 将矩阵的每一行相加
    sqDistances = sqDiffMat.sum(axis=1)
    # 开方
    distances = sqDistances ** 0.5
    # 根据距离排序从小到大的排序,返回对应的索引位置
    # argsort() 是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y。
    # print 'distances=', distances
    sortedDistIndicies = distances.argsort()
    # print 'distances.argsort()=', sortedDistIndicies


    classCount = {}
    for i in range(k):
        # 找到该样本的类型
        voteIlabel = labels[sortedDistIndicies[i]]
        # 在字典中将该类型加一
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    


    # a=[('b',2),('a',1),('c',0)]  b=sorted(a,key=operator.itemgetter(1)) 
#>>>b=[('c',0),('a',1),('b',2)] 可以看到排序是按照后边的0,1,2进行排序的,而不是a,b,c
    # b=sorted(a,key=operator.itemgetter(0)) 
#>>>b=[('a',1),('b',2),('c',0)] 这次比较的是前边的a,b,c而不是0,1,2


    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值