文章目录
前言
本文学习过程来源是《矩阵分析与应用-张贤达》一书. 可以通过 z-lib 下载.
我们之前一节的广义逆矩阵已经包含了逆矩阵、左逆矩阵和右逆矩阵
我们现在面临一个问题: 最小二乘解是非唯一的, 其会有通解. 这就会引申出两个问题
-
是否存在某种意义下的唯一解?
-
若存在唯一解,那么广义逆矩阵 A G A = A AGA = A AGA=A 是否仍旧有效?
为此, 我们引入了涵义更为广泛的广义逆矩阵: M o o r e − P e n r o s e Moore-Penrose Moore−Penrose 逆矩阵
M o o r e − P e n r o s e Moore-Penrose Moore−Penrose 逆矩阵的定义与性质
我们用 P S P_S PS 表示到向量空间 S S S 上的正交投影. 明显的, 有 P S x P_Sx PSx 在空间 S S S 上,且 x − P S x x-P_Sx x−PSx 与子空间 S S S 正交.
对于任意一个 m × n m \times n m×n 的复矩阵 G G G 我们使用 R a n g e ( G ) Range(G) Range(G) 来表示其值域空间.
M o o r e \mathrm{Moore} Moore 则证明出了, 矩阵 G G G 的广义逆矩阵 G † G^{\dagger} G† 必须满足条件:
G G † = P R a n g e ( G ) , G † G = P R a n g e ( G H ) (1) GG^{\dagger} = P_{Range(G)},\qquad G^{\dagger}G = P_{Range(G^H)} \tag{1} GG†=PRange(G),G†G=PRange(GH)(1)
我们将上述两条件称为 M o o r e \mathrm{Moore} Moore 条件, 而满足 M o o r e \mathrm{Moore} Moore 条件的矩阵 G † G^{\dagger} G† 被称为 M o o r e \mathrm{Moore} Moore 逆矩阵
此外, 由于上述条件不好使用, P e n r o s e \mathrm{Penrose} Penrose 提出的另外一组条件
1. M o o r e − P e n r o s e Moore-Penrose Moore−Penrose 条件
定义 1: 令A是任意的 m × n m \times n m×n 矩阵, 若称矩阵 G G G 是 A A A 的广义逆矩阵, 则需要满足下面四个条件 ( M o o r e − P e n r o s e \mathrm{Moore-Penrose} Moore−Penrose 条件):
-
( 1 ) A G A = A (1) \ AGA = A (1) AGA=A
-
( 2 ) G A G = G (2) \ GAG = G (2) GAG=G
-
( 3 ) A G (3) \ AG (3) AG 为 H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵, 即 ( A G ) H = A G (AG)^{\mathrm{H}} = AG (AG)H=AG
-
( 4 ) G A (4) \ GA (4) GA 为 H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵, 即 ( G A ) H = G A (GA)^H = GA (GA)H=GA
然后 R a d o \mathrm{Rado} Rado 证明了 P e n r o s e \mathrm{Penrose} Penrose 的定义与 M o o r e \mathrm{Moore} Moore 的定义等价.
2. 以条件满足数目分类
-
自反广义逆矩阵: 只满足条件 (1) 和 (2) 的矩阵 G = A † G=A^{\dagger} G=A† 称为 A A A 的自反广义矩阵.
-
正规化广义逆矩阵: 只满足条件(1)、(2) 和 (3) 的矩阵 A † A^{\dagger} A† 称为 A A A 的正规化广义逆矩阵.
-
弱广义逆矩阵: 只满足条件(1)、(2) 和 (4) 的矩阵 A † A^{\dagger} A† 称为 A A A 的弱广义逆矩阵.
-
M o o r e − P e n r o s e Moore-Penrose Moore−Penrose 逆矩阵: 满足 4 个条件
3. 一般广义矩阵的特性
定理 1:
若 A g A^g Ag 是矩阵 A A A 的任意一种广义逆矩阵, 则有:
r a n k ( A g ) ≥ r a n k ( A ) = r a n k ( A g A ) = r a n k ( A A g ) \mathrm{rank}(A^g) \geq \mathrm{rank}(A) = \mathrm{rank}(A^gA) = \mathrm{rank}(AA^g) rank(Ag)≥rank(A)=rank(AgA)=rank(AAg)
秩 r a n k ( A g ) = r a n k ( A ) \mathrm{rank}(A^g) = \mathrm{rank}(A) rank(Ag)=rank(A) 的一个充要条件: A g A^g Ag 是 A A A 的自反广义逆矩阵
我们上面的 M o o r e − P e n r o s e Moore-Penrose Moore−Penrose 条件可以引申到下面的几条性质:
-
( A H ) † = ( A † ) H (A^H) ^{\dagger} = (A^{\dagger}) ^H (AH)†=(A†)H
-
A † A A H = A H A A † = A H A^{\dagger} AA^H = A^H AA^{\dagger} = A^H A†AAH=AHAA†=AH
-
A A H ( A H ) † = ( A H ) † A H A = A AA^H (A^H) ^{\dagger} = (A^H) ^{\dagger} A^HA = A AAH(AH)†=(AH)†AHA=A
-
A A † , A † A , ( I − A A † ) , ( I − A † A ) AA^{\dagger} ,\ A^{\dagger}A ,\ (I-AA^{\dagger}) ,\ (I-A^{\dagger}A) AA†, A†A, (I−AA†), (I−A†A) 均为幂等矩阵
之前几篇博客里的广义逆矩阵的特例
-
n × n n \times n n×n 的正方非奇异矩阵 A n × n A_{n \times n} An×n 的逆矩阵 A − 1 A^{-1} A−1 满足 4 个条件
-
m × n m \times n m×n 的 A m × n ( m > n ) A_{m \times n} (m > n) Am×n(m>n) 的左伪逆矩阵 ( A H A ) − 1 A H (A^HA) ^{-1} A^H (AHA)−1AH 满足 4 个条件
-
m × n m \times n m×n 的 A m × n ( m < n ) A_{m \times n} (m < n) Am×n(m<n) 的右伪逆矩阵 A H ( A A H ) − 1 A^H (AA^H) ^{-1} AH(AAH)−1 满足 4 个条件
-
满足 L A m × n = I n LA_{m \times n} = I_n LAm×n=In 的一般左逆矩阵 L n × m L_{n \times m} Ln×m 满足 (1), (2)和 (4) 条件, 是弱广义逆矩阵
-
满足 A m × n R = I m A_{m \times n}R = I_m Am×nR=Im 的一般右逆矩阵 R n × m R_{n \times m} Rn×m 满足 (1), (2)和 (3)条件, 是正规化广义逆矩阵
-
广义逆矩阵 A − A^{-} A− 只满足条件 (1)
不同于左逆矩阵 L L L 右逆矩阵 R R R 和广义逆矩阵 A − A^{-} A− 的多值性, M o o r e − P e n r o s e \mathrm{Moore-Penrose} Moore−Penrose 逆矩阵定义唯一.
一般的, 我们使用广义逆矩阵直接当作 M o o r e − P e n r o s e \mathrm{Moore-Penrose} Moore−Penrose 逆矩阵的简称, 使用 A † A^{\dagger} A† 表示.
而原来的广义逆矩阵 (即只用条件 (1) A G A = A AGA = A AGA=A 定义的) 广义逆矩阵只用 A − A^{-} A− 表示.
一般情况下, A † A^{\dagger} A† 并不满足逆矩阵的性质 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1} A^{-1} (AB)−1=B−1A−1, 即有:
( A B ) † ≠ B † A † (AB)^{\dagger} \neq B^{\dagger} A^{\dagger} (AB)†=B†A†
定理 2:
若 A , B A,B A,B 均为使得矩阵 A B AB AB 存在的任意矩阵, 则 ( A B ) † = B † A † (AB)^{\dagger} = B^{\dagger} A^{\dagger} (AB)†=B†A† 的充要条件为以下之一:
-
$A^{\dagger}AB B^H A^H = BB^H A^H $ 和 $ BB^{\dagger} A^HAB = A^HAB$
-
A † A B B H A^{\dagger} ABB^H A†ABBH 和 A H A B B † A^HA BB^{\dagger} AHABB† 都是 H e r i t i a n \mathrm{Heritian} Heritian 矩阵
-
A † A B B H A H A B B † = B B H A H A A^{\dagger}A BB^H A^HA BB^{\dagger} = BB^H A^HA A†ABBHAHABB†=BBHAHA
-
A † A B = B ( A B ) † A B A^{\dagger}AB = B(AB)^{\dagger}AB A†AB=B(AB)†AB 且 B B † A H = A H A B ( A B ) † BB^{\dagger} A^H = A^HAB (AB)^{\dagger} BB†AH=AHAB(AB)†
4. M o o r e − P e n r o s e \mathrm{Moore-Penrose} Moore−Penrose 逆矩阵 A † A^{\dagger} A† 的性质
-
广义逆矩阵 A † A^{\dagger} A† 唯一
-
( A H ) † = ( A † ) H = A † H = A H † (A^H) ^{\dagger} = (A^{\dagger}) ^H = A^{\dagger H} = A^{H \dagger} (AH)†=(A†)H=A†H=AH†
-
( A † ) † = A (A^{\dagger}) ^{\dagger} = A (A†)†=A
-
若 $c \neq 0 $,则有 $ (cA)^{\dagger} = \frac{1}{c} A^{\dagger}$
-
若 D = d i a g ( d 11 , d 22 , ⋯ , d n n ) D = diag(d_{11},d_{22},\cdots,d_{nn}) D=diag(d11,d22,⋯,dnn) 为 n × n n \times n n×n 对角矩阵, 则 D † = d i a g ( d 11 † , d 22 † , ⋯ , d n n † ) D^{\dagger} = diag(d_{11}^{\dagger}, d_{22}^{\dagger}, \cdots, d_{nn}^{\dagger}) D†=diag(d11†,d22†,⋯,dnn†) (其中 d i i † = d i i − 1 d_{ii}^{\dagger} = d_{ii}^{-1} dii†=dii−1 或 d i i † = 0 d_{ii}^{\dagger} = 0 dii†=0 )
-
零矩阵的广义逆矩阵为零矩阵, 即: O m × n † = O n × m O_{m \times n}^{\dagger} = O_{n \times m} Om×n†=On×m
-
向量 $ x $ 的Moore-Penrose逆矩阵为: x † = ( x H x ) − 1 x H x^{\dagger} = (x^Hx) ^{-1} x^H x†=(xHx)−1xH
-
关于几个真假的判断:
-
A A † ≠ I m AA^{\dagger} \neq I_{m} AA†=Im
-
A † A ≠ I n A^{\dagger}A \neq I_{n} A†A=In
-
A H ( A H ) † ≠ I n A^H (A^H) ^{\dagger} \neq I_{n} AH(AH)†=In
-
( A H ) † A H ≠ I m (A^H) ^{\dagger} A^H \neq I_{m} (AH)†AH=Im
-
A † A A H = A H A^{\dagger}A A^H = A^H A†AAH=AH
-
A H A A † = A H A^{H} AA^{\dagger} = A^{H} AHAA†=AH
-
A H A A † = A H A^{H} AA^{\dagger} = A^{H} AHAA†=AH
-
A H A † A = A H A^{H} A^{\dagger}A = A^{H} AHA†A=AH
-
A A † ( A † ) H = ( A † ) H A A^{\dagger} (A^{\dagger}) ^H = (A^{\dagger}) ^H AA†(A†)H=(A†)H
-
( A † ) H A † A = ( A † ) H (A^{\dagger}) ^H A^{\dagger} A = (A^{\dagger}) ^H (A†)HA†A=(A†)H 这里存疑。。。
-
( A H ) † A H A = A (A^H) ^{\dagger} A^H A = A (AH)†AHA=A
-
A A H ( A H ) † = A A A^H (A^H) ^{\dagger} = A AAH(AH)†=A
-
A H ( A † ) H A † = A † A^H (A^{\dagger}) ^H A^{\dagger} = A^{\dagger} AH(A†)HA†=A†
-
A † ( A † ) H A H = A † A^{\dagger} (A^{\dagger}) ^H A^H = A^{\dagger} A†(A†)HAH=A†
-
-
任何矩阵 A m × n A_{m \times n} Am×n 的广义逆矩阵都可以用 A † = ( A H A ) † A H A^{\dagger} = (A^H A) ^{\dagger} A^H A†=(AHA)†AH 或者 A † = A H ( A A H ) † A^{\dagger} = A^H (AA^H) ^{\dagger} A†=AH(AAH)† 确定, 且他们有特殊情况:
-
若 A A A 列满秩, 则 A † = ( A H A ) − 1 A † A^{\dagger} = (A^HA) ^{-1} A^{\dagger} A†=(AHA)−1A† , 此时退化为左伪逆矩阵
-
若 A A A 行满秩, 则 A † = A H ( A A H ) − 1 A^{\dagger} = A^H (AA^H) ^{-1} A†=AH(AAH)−1 , 此时退化为右伪逆矩阵
-
若 A A A 为非奇异的正方矩阵, 则 A † = A − 1 A^{\dagger} = A^{-1} A†=A−1 , 此时退化为逆矩阵
-
-
若 A H A = P D P H A^H A = PDP^H AHA=PDPH , 其中 P P H = P H P = I PP^H = P^HP = I PPH=PHP=I , 且 D D D 为对角矩阵 , 则 A † = P D † P H A H A^{\dagger} = PD^{\dagger} P^H A^H A†=PD†PHAH
-
若 A = B C A = BC A=BC , 且 B B B 列满秩 , C C C 行满秩, 则有:
A † = C † B † = C H ( C C H ) − 1 ( B H B ) − 1 B H A^{\dagger} = C^{\dagger} B^{\dagger} = C^H (CC^H) ^{-1} (B^HB) ^{-1} B^H A†=C†B†=CH(CCH)−1(BHB)−1BH
-
若 $A^H = A $ ,其 $ A^2 = A $ ,则 $ A^{\dagger} = A$
-
如矩阵 A i A_{i} Ai 相互正交, 即 A i H A j = O A_i^H A_j = O AiHAj=O , 则我们有:
( A 1 + A 2 + ⋯ + A m ) † = A 1 † + A 2 † + ⋯ + A m † (A_1 + A_2 + \cdots + A_m) ^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_m^{\dagger} (A1+A2+⋯+Am)†=A1†+A2†+⋯+Am†
-
( A A H ) † = ( A † ) H A † (AA^H) ^{\dagger} = (A^{\dagger}) ^H A^{\dagger} (AAH)†=(A†)HA†
-
( A A H ) † ( A A H ) = A A † (AA^H) ^{\dagger} (AA^H) = AA^{\dagger} (AAH)†(AAH)=AA†
-
一般来说 ( A m ) † ≠ ( A † ) m (A^m) ^{\dagger} \neq (A^{\dagger}) ^m (Am)†=(A†)m , 但只要 A A H = A H A AA^H = A^HA AAH=AHA , 则有 ( A m ) † = ( A † ) m (A^m) ^{\dagger} = (A^{\dagger}) ^m (Am)†=(A†)m
-
若 A A A 为 m × n m \times n m×n 矩阵,则有:
[ A m × n O m × q O p × n O p × q ] † = [ ( A † ) n × m O n × p O q × m O q × p ] \begin{bmatrix} A_{m \times n} & O_{m \times q} \\ O_{p \times n} & O_{p \times q} \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} (A^{\dagger})_{n \times m} & O_{n \times p} \\ O_{q \times m} & O_{q \times p} \\ \end{bmatrix} [Am×nOp×nOm×qOp×q]†=[(A†)n×mOq×mOn×pOq×p]
[ O p × q O p × n O m × q A m × n ] † = [ O q × p O q × m O m × q ( A † ) n × m ] \begin{bmatrix} O_{p \times q} & O_{p \times n} \\ O_{m \times q} & A_{m \times n} \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} O_{q \times p} & O_{q \times m} \\ O_{m \times q} & (A^{\dagger})_{n \times m} \\ \end{bmatrix} [Op×qOm×qOp×nAm×n]†=[Oq×pOm×qOq×m(A†)n×m]
- 对于广义逆矩阵的秩, 有:
r a n k ( A † ) = r a n k ( A ) = r a n k ( A H ) = r a n k ( A † A ) = r a n k ( A A † ) = r a n k ( A A † A ) = r a n k ( A † A A † ) \begin{aligned} \mathrm{rank}(A^{\dagger}) & = \mathrm{rank}(A) = \mathrm{rank}(A^H) \\ &= \mathrm{rank}(A^{\dagger}A) = \mathrm{rank}(AA^{\dagger}) \\ &= \mathrm{rank}(AA^{\dagger}A) = \mathrm{rank}(A^{\dagger}AA^{\dagger}) \\ \end{aligned} rank(A†)=rank(A)=rank(AH)=rank(A†A)=rank(AA†)=rank(AA†A)=rank(A†AA†)
-
广义逆矩阵 A † A^{\dagger} A† 和 A H A^H AH 的行空间相同 (即他们的行空间都互相包含)
-
广义逆矩阵 A † A^{\dagger} A† 和 A H A^H AH 的列空间相同 ( 即 S p a n ( A † ) = S p a n ( A H ) \mathrm{Span}(A^{\dagger}) = \mathrm{Span}(A^H) Span(A†)=Span(AH) 或者 R a n g e ( A † ) = R a n g e ( A H ) \mathrm{Range}(A^{\dagger}) = \mathrm{Range}(A^H) Range(A†)=Range(AH) )
-
对于 m > n m > n m>n , 且 r a n k ( A ) = n \mathrm{rank}(A) = n rank(A)=n 时, 我们有广义逆矩阵 (左伪逆矩阵) A † = ( A H A ) − 1 A H A^{\dagger} = (A^HA) ^{-1} A^H A†=(AHA)−1AH
-
A A A 和 A A † AA^{\dagger} AA† 的列空间相同
-
( I m − A A † ) (I_m -AA^{\dagger}) (Im−AA†) 的列空间是矩阵 A A A 的列空间的正交补
-
A A † = A ( A H A ) − 1 A H AA^{\dagger} = A(A^HA) ^{-1} A^H AA†=A(AHA)−1AH 是幂等矩阵
-
I m − A A † I_m-AA^{\dagger} Im−AA† 是幂等矩阵
-
-
对于 m < n m < n m<n , 且 r a n k ( A ) = m \mathrm{rank}(A) = m rank(A)=m 时, 我们有广义逆矩阵 (右伪逆矩阵) A † = A H ( A A H ) − 1 A^{\dagger} = A^H (AA^H) ^{-1} A†=AH(AAH)−1
-
A † A^{\dagger} A† 和 A † A A^{\dagger}A A†A 的列空间相同
-
( I n − A † A ) (I_n -A^{\dagger}A) (In−A†A) 的列空间是矩阵 A H A^H AH 的列空间的正交补
-
A † A = A H ( A A H ) − 1 A A^{\dagger}A = A^H (AA^H) ^{-1} A A†A=AH(AAH)−1A 是幂等矩阵
-
I n − A † A I_n - A^{\dagger}A In−A†A 是幂等矩阵
-
-
若 A m × n , B m × p A_{m \times n} , B_{m \times p} Am×n,Bm×p , 则我们有:
[ A , B ] † = [ A † − A † B ( C † + D ) C † + D ] \begin{bmatrix} A,& B \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} A^{\dagger} - A^{\dagger} B (C^{\dagger}+D) \\ C^{\dagger}+D \end{bmatrix} [A,B]†=[A†−A†B(C†+D)C†+D]
其中, 我们有 C = ( I m − A A † ) B C = (I_m - AA^{\dagger})B C=(Im−AA†)B , 且 D = ( I p − C † C ) [ I p + ( I p − C † C ) B H ( A † ) H B ( I p − C † C ) ] − 1 B H ( A † ) H ( I m − B C † ) D = (I_p - C^{\dagger}C) [I_p + (I_p-C^{\dagger}C) B^H (A^{\dagger}) ^H B (I_p - C^{\dagger}C)] ^{-1} B^H (A^{\dagger}) ^H (I_m - BC^{\dagger}) D=(Ip−C†C)[Ip+(Ip−C†C)BH(A†)HB(Ip−C†C)]−1BH(A†)H(Im−BC†)
-
若 A m × n , B p × n A_{m \times n} , B_{p \times n} Am×n,Bp×n , 则我们有:
[ A B ] † = [ A † − T B A † , T ] \begin{bmatrix} A \\ B \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} A^{\dagger} - TBA^{\dagger}, &T \end{bmatrix} [AB]†=[A†−TBA†,T]
其中, 我们有 T = E † + ( I n − E † B ) A † ( A † ) H B H K ( I p − E E † ) T = E^{\dagger} + (I_n -E^{\dagger}B) A^{\dagger} (A^{\dagger}) ^H B^H K(I_p-EE^{\dagger}) T=E†+(In−E†B)A†(A†)HBHK(Ip−EE†) , 且 K = [ I p + ( I p − E E † ) B A † ( A † ) H B H ( I p − E E † ) ] − 1 K = [I_p + (I_p - EE^{\dagger}) BA^{\dagger} (A^{\dagger}) ^H B^H (I_p - EE^{\dagger})]^{-1} K=[Ip+(Ip−EE†)BA†(A†)HBH(Ip−EE†)]−1