矩阵分析与应用-1.9-Moore-Penrose逆矩阵-Section1

前言

本文学习过程来源是《矩阵分析与应用-张贤达》一书. 可以通过 z-lib 下载.

我们之前一节的广义逆矩阵已经包含了逆矩阵、左逆矩阵和右逆矩阵

我们现在面临一个问题: 最小二乘解是非唯一的, 其会有通解. 这就会引申出两个问题

  • 是否存在某种意义下的唯一解?

  • 若存在唯一解,那么广义逆矩阵 A G A = A AGA = A AGA=A 是否仍旧有效?

为此, 我们引入了涵义更为广泛的广义逆矩阵: M o o r e − P e n r o s e Moore-Penrose MoorePenrose 逆矩阵

M o o r e − P e n r o s e Moore-Penrose MoorePenrose 逆矩阵的定义与性质

我们用 P S P_S PS 表示到向量空间 S S S 上的正交投影. 明显的, 有 P S x P_Sx PSx 在空间 S S S 上,且 x − P S x x-P_Sx xPSx 与子空间 S S S 正交.

对于任意一个 m × n m \times n m×n 的复矩阵 G G G 我们使用 R a n g e ( G ) Range(G) Range(G) 来表示其值域空间.

M o o r e \mathrm{Moore} Moore 则证明出了, 矩阵 G G G 的广义逆矩阵 G † G^{\dagger} G 必须满足条件:

G G † = P R a n g e ( G ) , G † G = P R a n g e ( G H ) (1) GG^{\dagger} = P_{Range(G)},\qquad G^{\dagger}G = P_{Range(G^H)} \tag{1} GG=PRange(G),GG=PRange(GH)(1)

我们将上述两条件称为 M o o r e \mathrm{Moore} Moore 条件, 而满足 M o o r e \mathrm{Moore} Moore 条件的矩阵 G † G^{\dagger} G 被称为 M o o r e \mathrm{Moore} Moore 逆矩阵

此外, 由于上述条件不好使用, P e n r o s e \mathrm{Penrose} Penrose 提出的另外一组条件

1. M o o r e − P e n r o s e Moore-Penrose MoorePenrose 条件

定义 1: 令A是任意的 m × n m \times n m×n 矩阵, 若称矩阵 G G G A A A 的广义逆矩阵, 则需要满足下面四个条件 ( M o o r e − P e n r o s e \mathrm{Moore-Penrose} MoorePenrose 条件):

  • ( 1 )   A G A = A (1) \ AGA = A (1) AGA=A

  • ( 2 )   G A G = G (2) \ GAG = G (2) GAG=G

  • ( 3 )   A G (3) \ AG (3) AG H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵, 即 ( A G ) H = A G (AG)^{\mathrm{H}} = AG (AG)H=AG

  • ( 4 )   G A (4) \ GA (4) GA H e r m i t i a n \mathrm{Hermitian} Hermitian 矩阵, 即 ( G A ) H = G A (GA)^H = GA (GA)H=GA

然后 R a d o \mathrm{Rado} Rado 证明了 P e n r o s e \mathrm{Penrose} Penrose 的定义与 M o o r e \mathrm{Moore} Moore 的定义等价.

2. 以条件满足数目分类

  • 自反广义逆矩阵: 只满足条件 (1) 和 (2) 的矩阵 G = A † G=A^{\dagger} G=A 称为 A A A 的自反广义矩阵.

  • 正规化广义逆矩阵: 只满足条件(1)、(2) 和 (3) 的矩阵 A † A^{\dagger} A 称为 A A A 的正规化广义逆矩阵.

  • 弱广义逆矩阵: 只满足条件(1)、(2) 和 (4) 的矩阵 A † A^{\dagger} A 称为 A A A 的弱广义逆矩阵.

  • M o o r e − P e n r o s e Moore-Penrose MoorePenrose 逆矩阵: 满足 4 个条件

3. 一般广义矩阵的特性

定理 1:

A g A^g Ag 是矩阵 A A A 的任意一种广义逆矩阵, 则有:

r a n k ( A g ) ≥ r a n k ( A ) = r a n k ( A g A ) = r a n k ( A A g ) \mathrm{rank}(A^g) \geq \mathrm{rank}(A) = \mathrm{rank}(A^gA) = \mathrm{rank}(AA^g) rank(Ag)rank(A)=rank(AgA)=rank(AAg)

r a n k ( A g ) = r a n k ( A ) \mathrm{rank}(A^g) = \mathrm{rank}(A) rank(Ag)=rank(A) 的一个充要条件: A g A^g Ag A A A 的自反广义逆矩阵

我们上面的 M o o r e − P e n r o s e Moore-Penrose MoorePenrose 条件可以引申到下面的几条性质:

  • ( A H ) † = ( A † ) H (A^H) ^{\dagger} = (A^{\dagger}) ^H (AH)=(A)H

  • A † A A H = A H A A † = A H A^{\dagger} AA^H = A^H AA^{\dagger} = A^H AAAH=AHAA=AH

  • A A H ( A H ) † = ( A H ) † A H A = A AA^H (A^H) ^{\dagger} = (A^H) ^{\dagger} A^HA = A AAH(AH)=(AH)AHA=A

  • A A † ,   A † A ,   ( I − A A † ) ,   ( I − A † A ) AA^{\dagger} ,\ A^{\dagger}A ,\ (I-AA^{\dagger}) ,\ (I-A^{\dagger}A) AA, AA, (IAA), (IAA) 均为幂等矩阵

之前几篇博客里的广义逆矩阵的特例

  • n × n n \times n n×n 的正方非奇异矩阵 A n × n A_{n \times n} An×n 的逆矩阵 A − 1 A^{-1} A1 满足 4 个条件

  • m × n m \times n m×n A m × n ( m > n ) A_{m \times n} (m > n) Am×n(m>n) 的左伪逆矩阵 ( A H A ) − 1 A H (A^HA) ^{-1} A^H (AHA)1AH 满足 4 个条件

  • m × n m \times n m×n A m × n ( m < n ) A_{m \times n} (m < n) Am×n(m<n) 的右伪逆矩阵 A H ( A A H ) − 1 A^H (AA^H) ^{-1} AH(AAH)1 满足 4 个条件

  • 满足 L A m × n = I n LA_{m \times n} = I_n LAm×n=In 的一般左逆矩阵 L n × m L_{n \times m} Ln×m 满足 (1), (2)和 (4) 条件, 是弱广义逆矩阵

  • 满足 A m × n R = I m A_{m \times n}R = I_m Am×nR=Im 的一般右逆矩阵 R n × m R_{n \times m} Rn×m 满足 (1), (2)和 (3)条件, 是正规化广义逆矩阵

  • 广义逆矩阵 A − A^{-} A 只满足条件 (1)

不同于左逆矩阵 L L L 右逆矩阵 R R R 和广义逆矩阵 A − A^{-} A 的多值性, M o o r e − P e n r o s e \mathrm{Moore-Penrose} MoorePenrose 逆矩阵定义唯一.

一般的, 我们使用广义逆矩阵直接当作 M o o r e − P e n r o s e \mathrm{Moore-Penrose} MoorePenrose 逆矩阵的简称, 使用 A † A^{\dagger} A 表示.

而原来的广义逆矩阵 (即只用条件 (1) A G A = A AGA = A AGA=A 定义的) 广义逆矩阵只用 A − A^{-} A 表示.

一般情况下, A † A^{\dagger} A 并不满足逆矩阵的性质 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1} A^{-1} (AB)1=B1A1, 即有:

( A B ) † ≠ B † A † (AB)^{\dagger} \neq B^{\dagger} A^{\dagger} (AB)=BA

定理 2:

A , B A,B A,B 均为使得矩阵 A B AB AB 存在的任意矩阵, 则 ( A B ) † = B † A † (AB)^{\dagger} = B^{\dagger} A^{\dagger} (AB)=BA 的充要条件为以下之一:

  • $A^{\dagger}AB B^H A^H = BB^H A^H $ 和 $ BB^{\dagger} A^HAB = A^HAB$

  • A † A B B H A^{\dagger} ABB^H AABBH A H A B B † A^HA BB^{\dagger} AHABB 都是 H e r i t i a n \mathrm{Heritian} Heritian 矩阵

  • A † A B B H A H A B B † = B B H A H A A^{\dagger}A BB^H A^HA BB^{\dagger} = BB^H A^HA AABBHAHABB=BBHAHA

  • A † A B = B ( A B ) † A B A^{\dagger}AB = B(AB)^{\dagger}AB AAB=B(AB)AB B B † A H = A H A B ( A B ) † BB^{\dagger} A^H = A^HAB (AB)^{\dagger} BBAH=AHAB(AB)

4. M o o r e − P e n r o s e \mathrm{Moore-Penrose} MoorePenrose 逆矩阵 A † A^{\dagger} A 的性质

  • 广义逆矩阵 A † A^{\dagger} A 唯一

  • ( A H ) † = ( A † ) H = A † H = A H † (A^H) ^{\dagger} = (A^{\dagger}) ^H = A^{\dagger H} = A^{H \dagger} (AH)=(A)H=AH=AH

  • ( A † ) † = A (A^{\dagger}) ^{\dagger} = A (A)=A

  • 若 $c \neq 0 $,则有 $ (cA)^{\dagger} = \frac{1}{c} A^{\dagger}$

  • D = d i a g ( d 11 , d 22 , ⋯   , d n n ) D = diag(d_{11},d_{22},\cdots,d_{nn}) D=diag(d11,d22,,dnn) n × n n \times n n×n 对角矩阵, 则 D † = d i a g ( d 11 † , d 22 † , ⋯   , d n n † ) D^{\dagger} = diag(d_{11}^{\dagger}, d_{22}^{\dagger}, \cdots, d_{nn}^{\dagger}) D=diag(d11,d22,,dnn) (其中 d i i † = d i i − 1 d_{ii}^{\dagger} = d_{ii}^{-1} dii=dii1 d i i † = 0 d_{ii}^{\dagger} = 0 dii=0 )

  • 零矩阵的广义逆矩阵为零矩阵, 即: O m × n † = O n × m O_{m \times n}^{\dagger} = O_{n \times m} Om×n=On×m

  • 向量 $ x $ 的Moore-Penrose逆矩阵为: x † = ( x H x ) − 1 x H x^{\dagger} = (x^Hx) ^{-1} x^H x=(xHx)1xH

  • 关于几个真假的判断:

    • A A † ≠ I m AA^{\dagger} \neq I_{m} AA=Im

    • A † A ≠ I n A^{\dagger}A \neq I_{n} AA=In

    • A H ( A H ) † ≠ I n A^H (A^H) ^{\dagger} \neq I_{n} AH(AH)=In

    • ( A H ) † A H ≠ I m (A^H) ^{\dagger} A^H \neq I_{m} (AH)AH=Im

    • A † A A H = A H A^{\dagger}A A^H = A^H AAAH=AH

    • A H A A † = A H A^{H} AA^{\dagger} = A^{H} AHAA=AH

    • A H A A † = A H A^{H} AA^{\dagger} = A^{H} AHAA=AH

    • A H A † A = A H A^{H} A^{\dagger}A = A^{H} AHAA=AH

    • A A † ( A † ) H = ( A † ) H A A^{\dagger} (A^{\dagger}) ^H = (A^{\dagger}) ^H AA(A)H=(A)H

    • ( A † ) H A † A = ( A † ) H (A^{\dagger}) ^H A^{\dagger} A = (A^{\dagger}) ^H (A)HAA=(A)H 这里存疑。。。

    • ( A H ) † A H A = A (A^H) ^{\dagger} A^H A = A (AH)AHA=A

    • A A H ( A H ) † = A A A^H (A^H) ^{\dagger} = A AAH(AH)=A

    • A H ( A † ) H A † = A † A^H (A^{\dagger}) ^H A^{\dagger} = A^{\dagger} AH(A)HA=A

    • A † ( A † ) H A H = A † A^{\dagger} (A^{\dagger}) ^H A^H = A^{\dagger} A(A)HAH=A

  • 任何矩阵 A m × n A_{m \times n} Am×n 的广义逆矩阵都可以用 A † = ( A H A ) † A H A^{\dagger} = (A^H A) ^{\dagger} A^H A=(AHA)AH 或者 A † = A H ( A A H ) † A^{\dagger} = A^H (AA^H) ^{\dagger} A=AH(AAH) 确定, 且他们有特殊情况:

    • A A A 列满秩, 则 A † = ( A H A ) − 1 A † A^{\dagger} = (A^HA) ^{-1} A^{\dagger} A=(AHA)1A , 此时退化为左伪逆矩阵

    • A A A 行满秩, 则 A † = A H ( A A H ) − 1 A^{\dagger} = A^H (AA^H) ^{-1} A=AH(AAH)1 , 此时退化为右伪逆矩阵

    • A A A 为非奇异的正方矩阵, 则 A † = A − 1 A^{\dagger} = A^{-1} A=A1 , 此时退化为逆矩阵

  • A H A = P D P H A^H A = PDP^H AHA=PDPH , 其中 P P H = P H P = I PP^H = P^HP = I PPH=PHP=I , 且 D D D 为对角矩阵 , 则 A † = P D † P H A H A^{\dagger} = PD^{\dagger} P^H A^H A=PDPHAH

  • A = B C A = BC A=BC , 且 B B B 列满秩 , C C C 行满秩, 则有:

A † = C † B † = C H ( C C H ) − 1 ( B H B ) − 1 B H A^{\dagger} = C^{\dagger} B^{\dagger} = C^H (CC^H) ^{-1} (B^HB) ^{-1} B^H A=CB=CH(CCH)1(BHB)1BH

  • 若 $A^H = A $ ,其 $ A^2 = A $ ,则 $ A^{\dagger} = A$

  • 如矩阵 A i A_{i} Ai 相互正交, 即 A i H A j = O A_i^H A_j = O AiHAj=O , 则我们有:

( A 1 + A 2 + ⋯ + A m ) † = A 1 † + A 2 † + ⋯ + A m † (A_1 + A_2 + \cdots + A_m) ^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_m^{\dagger} (A1+A2++Am)=A1+A2++Am

  • ( A A H ) † = ( A † ) H A † (AA^H) ^{\dagger} = (A^{\dagger}) ^H A^{\dagger} (AAH)=(A)HA

  • ( A A H ) † ( A A H ) = A A † (AA^H) ^{\dagger} (AA^H) = AA^{\dagger} (AAH)(AAH)=AA

  • 一般来说 ( A m ) † ≠ ( A † ) m (A^m) ^{\dagger} \neq (A^{\dagger}) ^m (Am)=(A)m , 但只要 A A H = A H A AA^H = A^HA AAH=AHA , 则有 ( A m ) † = ( A † ) m (A^m) ^{\dagger} = (A^{\dagger}) ^m (Am)=(A)m

  • A A A m × n m \times n m×n 矩阵,则有:

[ A m × n O m × q O p × n O p × q ] † = [ ( A † ) n × m O n × p O q × m O q × p ] \begin{bmatrix} A_{m \times n} & O_{m \times q} \\ O_{p \times n} & O_{p \times q} \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} (A^{\dagger})_{n \times m} & O_{n \times p} \\ O_{q \times m} & O_{q \times p} \\ \end{bmatrix} [Am×nOp×nOm×qOp×q]=[(A)n×mOq×mOn×pOq×p]

[ O p × q O p × n O m × q A m × n ] † = [ O q × p O q × m O m × q ( A † ) n × m ] \begin{bmatrix} O_{p \times q} & O_{p \times n} \\ O_{m \times q} & A_{m \times n} \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} O_{q \times p} & O_{q \times m} \\ O_{m \times q} & (A^{\dagger})_{n \times m} \\ \end{bmatrix} [Op×qOm×qOp×nAm×n]=[Oq×pOm×qOq×m(A)n×m]

  • 对于广义逆矩阵的秩, 有:

r a n k ( A † ) = r a n k ( A ) = r a n k ( A H ) = r a n k ( A † A ) = r a n k ( A A † ) = r a n k ( A A † A ) = r a n k ( A † A A † ) \begin{aligned} \mathrm{rank}(A^{\dagger}) & = \mathrm{rank}(A) = \mathrm{rank}(A^H) \\ &= \mathrm{rank}(A^{\dagger}A) = \mathrm{rank}(AA^{\dagger}) \\ &= \mathrm{rank}(AA^{\dagger}A) = \mathrm{rank}(A^{\dagger}AA^{\dagger}) \\ \end{aligned} rank(A)=rank(A)=rank(AH)=rank(AA)=rank(AA)=rank(AAA)=rank(AAA)

  • 广义逆矩阵 A † A^{\dagger} A A H A^H AH 的行空间相同 (即他们的行空间都互相包含)

  • 广义逆矩阵 A † A^{\dagger} A A H A^H AH 的列空间相同 ( 即 S p a n ( A † ) = S p a n ( A H ) \mathrm{Span}(A^{\dagger}) = \mathrm{Span}(A^H) Span(A)=Span(AH) 或者 R a n g e ( A † ) = R a n g e ( A H ) \mathrm{Range}(A^{\dagger}) = \mathrm{Range}(A^H) Range(A)=Range(AH) )

  • 对于 m > n m > n m>n , 且 r a n k ( A ) = n \mathrm{rank}(A) = n rank(A)=n 时, 我们有广义逆矩阵 (左伪逆矩阵) A † = ( A H A ) − 1 A H A^{\dagger} = (A^HA) ^{-1} A^H A=(AHA)1AH

    • A A A A A † AA^{\dagger} AA 的列空间相同

    • ( I m − A A † ) (I_m -AA^{\dagger}) (ImAA) 的列空间是矩阵 A A A 的列空间的正交补

    • A A † = A ( A H A ) − 1 A H AA^{\dagger} = A(A^HA) ^{-1} A^H AA=A(AHA)1AH 是幂等矩阵

    • I m − A A † I_m-AA^{\dagger} ImAA 是幂等矩阵

  • 对于 m < n m < n m<n , 且 r a n k ( A ) = m \mathrm{rank}(A) = m rank(A)=m 时, 我们有广义逆矩阵 (右伪逆矩阵) A † = A H ( A A H ) − 1 A^{\dagger} = A^H (AA^H) ^{-1} A=AH(AAH)1

    • A † A^{\dagger} A A † A A^{\dagger}A AA 的列空间相同

    • ( I n − A † A ) (I_n -A^{\dagger}A) (InAA) 的列空间是矩阵 A H A^H AH 的列空间的正交补

    • A † A = A H ( A A H ) − 1 A A^{\dagger}A = A^H (AA^H) ^{-1} A AA=AH(AAH)1A 是幂等矩阵

    • I n − A † A I_n - A^{\dagger}A InAA 是幂等矩阵

  • A m × n , B m × p A_{m \times n} , B_{m \times p} Am×n,Bm×p , 则我们有:

    [ A , B ] † = [ A † − A † B ( C † + D ) C † + D ] \begin{bmatrix} A,& B \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} A^{\dagger} - A^{\dagger} B (C^{\dagger}+D) \\ C^{\dagger}+D \end{bmatrix} [A,B]=[AAB(C+D)C+D]

    其中, 我们有 C = ( I m − A A † ) B C = (I_m - AA^{\dagger})B C=(ImAA)B , 且 D = ( I p − C † C ) [ I p + ( I p − C † C ) B H ( A † ) H B ( I p − C † C ) ] − 1 B H ( A † ) H ( I m − B C † ) D = (I_p - C^{\dagger}C) [I_p + (I_p-C^{\dagger}C) B^H (A^{\dagger}) ^H B (I_p - C^{\dagger}C)] ^{-1} B^H (A^{\dagger}) ^H (I_m - BC^{\dagger}) D=(IpCC)[Ip+(IpCC)BH(A)HB(IpCC)]1BH(A)H(ImBC)

  • A m × n , B p × n A_{m \times n} , B_{p \times n} Am×n,Bp×n , 则我们有:

    [ A B ] † = [ A † − T B A † , T ] \begin{bmatrix} A \\ B \\ \end{bmatrix} ^{\dagger} = \begin{bmatrix} A^{\dagger} - TBA^{\dagger}, &T \end{bmatrix} [AB]=[ATBA,T]

    其中, 我们有 T = E † + ( I n − E † B ) A † ( A † ) H B H K ( I p − E E † ) T = E^{\dagger} + (I_n -E^{\dagger}B) A^{\dagger} (A^{\dagger}) ^H B^H K(I_p-EE^{\dagger}) T=E+(InEB)A(A)HBHK(IpEE) , 且 K = [ I p + ( I p − E E † ) B A † ( A † ) H B H ( I p − E E † ) ] − 1 K = [I_p + (I_p - EE^{\dagger}) BA^{\dagger} (A^{\dagger}) ^H B^H (I_p - EE^{\dagger})]^{-1} K=[Ip+(IpEE)BA(A)HBH(IpEE)]1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值