Matlalb实现直方图均衡化
直方图均衡化
直方图均衡化是一种使输出图像直方图近似服从均匀分布的变换算法,其计算步骤如下:
- 列出原始图像的灰度级 f j f_j fj,j=0,1,…,k,…,L-1,其中L是灰度级的个数。
- 统计各灰度值的像素数目 N j N_j Nj, j=0,1,…,k,…,L-1。
- 计算原始图像直方图各灰度级的频度Pj= N j n \frac{Nj}{n} nNj,j=0,1,2,…,k,…,L-1,其中n为原始图像总的像素数目。
- 计算累计分布函数C(f)= ∑ i = 0 k P j ( f j ) \displaystyle\sum_{i=0}^{k} P_j(f_j) i=0∑kPj(f

本文详细介绍了直方图均衡化的概念和计算步骤,并提供了Matlab实现直方图均衡化的代码示例。通过示例代码,展示了如何处理灰度图像和RGB图像,以及直方图均衡化前后的图像对比和直方图变化。
最低0.47元/天 解锁文章
301

被折叠的 条评论
为什么被折叠?



