VM虚拟机软件上安装Linux系统

VM虚拟机软件上安装系统

1.点击创建新的虚拟机
在这里插入图片描述
2.选择自定义(高级),点击下一步
在这里插入图片描述
3.默认 下一步在这里插入图片描述
4.安装自己的操作系统,因为我们要安装Linux系统,这里选择对应的镜像iso,
(如果是Windows系统,也一样,选择Windows镜像就行)
点击下一步

在这里插入图片描述

5.填写信息,点击下一步即可

在这里插入图片描述

6.命名虚拟机,名字一般可以默认,路径软件默认的路径在C盘,我们修改下路径,完成后点击确认,点击下一步

在这里插入图片描述
7.处理器配置,选择对应的数量和内核数量,点击下一步

在这里插入图片描述
8.虚拟机内存,这里建议给2G,有其他选择也可以,这样你就可以,多获得一些知识(这里指的是解决错误的经验) 选完后点击下一步

在这里插入图片描述
9.网络类型选择

下面是我自己的整理内容,大家可以瞅瞅

a:使用桥接网络 从本地单独的分出一个ip给虚拟机,可以连接到互联网

b:使用网络地址转换 共享本机的IP,也可以连接互联网,但是如果虚拟机在测试时,出现一些有危害或者带病毒的文件,就可以根据共享文件,
  使主机受牵连,可以关闭共享文件,或者让虚拟机只可以读取主机共享文件夹而不能写。

c:使用仅主机模式网络 虚拟机只能与本地进行交互,不可以连接到互联网

完成选择后点击下一步

在这里插入图片描述
10.选择I/O控制类型 默认即可点击下一步
在这里插入图片描述

11.选择磁盘类型 默认即可 完成点击下一步
在这里插入图片描述

12.选择磁盘 选泽创建新虚拟磁盘 点击下一步
在这里插入图片描述
13.指定磁盘容量 选择将虚拟磁盘存储为单个文件 点击下一步

在这里插入图片描述

14.指定磁盘文件 默认即可 点击下一步在这里插入图片描述
15.点击自定义硬件 如下图
在这里插入图片描述
第一步:点击新CD/DVD(IDE)
第二步:勾选启动时连接
第三步:与选择的镜像文件对应
点击关闭,完成即可
在这里插入图片描述
注意:完成后如果没有连到网络 在右上角将下图所示的开关打开即可
在这里插入图片描述

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值