平衡二叉树的调整(详解 LL、RR、LR、RL)

浙江大学讲解视频

平衡二叉树(AVL)的定义

  • 任一结点的左右子树高度差的绝对值小于等于1,绝对值就是平衡因子
  • 任一结点的左右子树均为AVL树
  • 平衡二叉树也可以是一个空树

平均查找长度(ASL)(查找效率) (ASL=所有查找次数X*查找次数为X的结点数相加)/总结点数
例:


平衡二叉树的调整

当向一棵AVL树中插入一个新的结点,有可能会破坏树的平衡,这时就需要调整这棵树,根据不同的插入位置,一共有四种调整方法,在调整的过程中要注意,一定要满足二叉搜索树的性质

插入位置如何调整
插入结点在发现者右子树右边RR调整,右单旋
插入结点在发现者左子树左边LL调整,左单旋
插入结点在发现者左子树右边LR调整,左右双旋
插入结点在发现者右子树左边RL调整,右左双旋

注,发现者是第一个不满足这棵树是平衡二叉树的结点,如果有多个结点同时不满足,就选最靠近下面的那个结点作为发现者


右单旋(RR调整)

插入结点在发现结点的右子树的右边

插入13时发现5的平衡因子被破坏了,破坏者在发现结点右子树的右边,所以应该对这棵树进行右单旋(RR单旋),让树向左边转,在旋转过程中让被破坏者的右子树作为调整后的跟结点.在调整过程中发现8这个结点会有冲突,那么就按照二叉搜索树的性质将8放在5的右边,调整结果如下


左单旋(LL调整)

插入结点在发现结点左子树的左边

插入2时发现4和5同时为发现者,这时就选择距离插入结点较近的点作为发现者。因为插入结点在发现者左子树的左边,所以应该对这棵树进行左单旋(LL单旋),让树向右边转,调整结果如下


左右双旋(LR双旋)

插入结点在发现结点左子树的右边

一定要记得先右单旋,再左单旋,以4这棵树右单旋以后结果如下

发现这棵平衡二叉树还不平衡,再以5这棵树左单旋,结果如下


右左双旋(RL双旋)

插入结点在发现结点右子树的左边

一定要记得先左单旋,再右单旋,以6这棵树左单旋以后结果如下

发现这棵平衡二叉树还不平衡,再以3这棵树右单旋,结果如下


注意:在双旋过程中,注意不要让双旋的名称误解了,名称仅仅是表示插入结点相对于发现结点的位置,左右双旋是先右单旋左单旋右左双旋是先左单旋右单旋

如有错误之处,欢迎评论

根据平衡二叉树的定义,当插入或删除节点后,如果树的平衡因子(左子树高度减去右子树高度)的绝对值大于1,则需要进行旋转操作来保持平衡。其中,LR算法是一种针对平衡二叉树的旋转算法,用于解决插入节点后左右子树高度差大于1的情况。 具体来说,当插入节点后,如果左子树高度比右子树高度大2,且新节点插入到了左子树的右子树上,则需要进行LR旋转。该旋转包括以下三个步骤: 1. 对左子树进行一次RR旋转,将新节点的父节点作为旋转后的根节点。 2. 对整棵树进行一次LL旋转,将新节点作为旋转后的根节点。 3. 更新所有节点的高度值。 下面是一个示例代码,其中Node类表示平衡二叉树的节点,height表示节点的高度,left和right分别表示左右子树。 ```python class Node: def __init__(self, val): self.val = val self.height = 1 self.left = None self.right = None def height(node): if not node: return 0 return node.height def balance_factor(node): if not node: return 0 return height(node.left) - height(node.right) def left_rotate(node): new_root = node.right node.right = new_root.left new_root.left = node node.height = max(height(node.left), height(node.right)) + 1 new_root.height = max(height(new_root.left), height(new_root.right)) + 1 return new_root def right_rotate(node): new_root = node.left node.left = new_root.right new_root.right = node node.height = max(height(node.left), height(node.right)) + 1 new_root.height = max(height(new_root.left), height(new_root.right)) + 1 return new_root def insert_node(node, val): if not node: return Node(val) elif val < node.val: node.left = insert_node(node.left, val) else: node.right = insert_node(node.right, val) node.height = max(height(node.left), height(node.right)) + 1 bf = balance_factor(node) if bf > 1 and val < node.left.val: return right_rotate(node) elif bf < -1 and val > node.right.val: return left_rotate(node) elif bf > 1 and val > node.left.val: node.left = left_rotate(node.left) return right_rotate(node) elif bf < -1 and val < node.right.val: node.right = right_rotate(node.right) return left_rotate(node) return node ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值