题目描述
Siruseri 政府决定将石油资源丰富的 Navalur 省的土地拍卖给私人承包商以 建立油井。被拍卖的整块土地为一个矩形区域,被划分为 M×N 个小块。 Siruseri 地质调查局有关于 Navalur 土地石油储量的估测数据。这些数据表示 为 M×N 个正整数,即对每一小块土地石油储量的估计值。 为了避免出现垄断,政府规定每一个承包商只能承包一个由 K×K 块相连的 土地构成的正方形区域。 AoE 石油联合公司由三个承包商组成,他们想选择三块互不相交的 K×K 的 区域使得总的收益最大。 例如,假设石油储量的估计值如下:
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 8 8 8 8 8 1 1 1
1 8 8 8 8 8 1 1 1
1 8 8 8 8 8 1 1 1
1 1 1 1 8 8 8 1 1
1 1 1 1 1 1 8 8 8
1 1 1 1 1 1 9 9 9
1 1 1 1 1 1 9 9 9
如果 K = 2, AoE 公司可以承包的区域的石油储量总和为 100, 如果 K = 3, AoE 公司可以承包的区域的石油储量总和为 208。 AoE 公司雇佣你来写一个程序,帮助计算出他们可以承包的区域的石油储量 之和的最大值。
输入格式
输入第一行包含三个整数 M, N, K,其中 M 和 N 是矩形区域的行数和列数, K 是每一个承包商承包的正方形的大小(边长的块数)。接下来 M 行,每行有 N 个正整数表示这一行每一小块土地的石油储量的估计值。
输出格式
输出只包含一个正整数,表示 AoE 公司可以承包的区域的石油储量之和的 最大值。
输入输出样例
输入 #1
9 9 3
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 8 8 8 8 8 1 1 1
1 8 8 8 8 8 1 1 1
1 8 8 8 8 8 1 1 1
1 1 1 1 8 8 8 1 1
1 1 1 1 1 1 8 8 8
1 1 1 1 1 1 9 9 9
1 1 1 1 1 1 9 9 9
输出 #1
208
说明/提示
数据保证 K≤M 且 K≤N 并且至少有三个 K×K 的互不相交的正方形区域。
其 中 30%的输入数据,M, N≤ 12。所有的输入数据, M, N≤ 1500。每一小块土地的 石油储量的估计值是非负整数且≤ 500。
解法:前缀和
#include<cstdio>
#define si 1505
#define re register int
using namespace std;
int n,m,k,ans,mp[si][si],a[si][si];
int b[si][si],c[si][si],d[si][si];
inline int read() {
int x=0,cf=1;
char ch=getchar();
while(ch<'0'||ch>'9') {
if(ch=='-') cf=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') {
x=(x<<3)+(x<<1)+(ch^48);
ch=getchar();
}
return x*cf;
}
inline int max(int A,int B) { return A>B?A:B; }
int main() {
n=read(),m=read(),k=read();
for(re i=1;i<=n;i++) for(re j=1;j<=m;j++)
mp[i][j]=mp[i-1][j]+mp[i][j-1]-mp[i-1][j-1]+read();
for(re i=n;i>=k;i--) for(re j=m;j>=k;j--)
mp[i][j]-=mp[i-k][j]+mp[i][j-k]-mp[i-k][j-k];
for(re i=k;i<=n;i++) for(re j=k;j<=m;j++)
a[i][j]=max(mp[i][j],max(a[i-1][j],a[i][j-1]));
for(re i=k;i<=n;i++) for(re j=m;j>=k;j--)
b[i][j]=max(mp[i][j],max(b[i-1][j],b[i][j+1]));
for(re i=n;i>=k;i--) for(re j=k;j<=m;j++)
c[i][j]=max(mp[i][j],max(c[i+1][j],c[i][j-1]));
for(re i=n;i>=k;i--) for(re j=m;j>=k;j--)
d[i][j]=max(mp[i][j],max(d[i+1][j],d[i][j+1]));
for(re i=k;i<=n-k;i++) for(re j=k;j<=m-k;j++)
ans=max(ans,a[i][j]+b[i][j+k]+c[i+k][m]);
for(re i=k;i<=n-k;i++) for(re j=k;j<=m-k;j++)
ans=max(ans,a[i][m]+c[i+k][j]+d[i+k][j+k]);
for(re i=k;i<=n-k;i++) for(re j=k;j<=m-k;j++)
ans=max(ans,a[i][j]+b[n][j+k]+c[i+k][j]);
for(re i=k;i<=n-k;i++) for(re j=k;j<=m-k;j++)
ans=max(ans,a[n][j]+b[i][j+k]+d[i+k][j+k]);
for(re i=k;i<=n-k;i++) for(re j=k+k;j<=m-k;j++)
ans=max(ans,a[n][j-k]+b[n][j+k]+mp[i][j]);
for(re i=k+k;i<=n-k;i++) for(re j=k;j<=m-k;j++)
ans=max(ans,a[i-k][m]+c[i+k][m]+mp[i][j]);
printf("%d",ans); return 0;
}