我们把只包含质因子 2、3 和 5 的数称作丑数(Ugly Number)。求按从小到大的顺序的第 n 个丑数。
示例:
输入: n = 10
输出: 12
解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 是前 10 个丑数。
说明:
1 是丑数。
n 不超过1690。
思路:
这里的思路就是使用dp的思想,有个重要的结论需要知道,那就是丑数,其实可以利用之前的小丑数来得到它。但是呢,这里有个问题,那就是我们怎么知道是哪个数*多少得到正确的下标上的数。这里用到了三个指针,因为右三个数可以相乘,2、3、5。我们需要判断是哪个数最小,然后如果这个数用到了 就++,这样就保证了,每个数只用了一遍。
class Solution {
public int nthUglyNumber(int n) {
int a=0,b=0,c=0;
int []dp=new int[n];
dp[0]=1;
for(int i=1;i<n;i++){
int na=dp[a]*2;
int nb=dp[b]*3;
int nc=dp[c]*5;
dp[i]=Math.min(Math.min(na,nb),nc);
//这里是一个坑,因为 可能会出现两个数的结果结果相同的情况,这个时候,这些数都应该++,所以这里不能用else,而是全部用if,这样就可以保证全部都可以判断一下了。
if(dp[i]==na)
a++;
if(dp[i]==nb)
b++;
if(dp[i]==nc)
c++;
}
return dp[n-1];
}
}