神经网络&深度学习——手写数字识别问题

本文通过构建三层神经网络解决手写数字识别问题,详细介绍了网络结构和训练过程。使用了多种梯度下降优化算法,包括AdaGrad、RMSprop、Momentum、Nesterov Momentum和Adam,以提升训练效率。实验数据集为经典的MNIST,通过将图像转换为一维向量,结合ReLU和Softmax-with-Loss层进行多分类任务。
摘要由CSDN通过智能技术生成

我们将构建一个三层的神经网络来处理手写数字识别问题,之后我们将运用AdaGrad、RMSprop、Momentum、Nesterov Momentum和Adam优化算法来加速梯度下降的过程,首先我们先来实现一个简单的神经网络。

1. 导入所需的Python库

# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
from utils import load_mnist
from collections import OrderedDict

2. 加载数据并可视化

先介绍一下在这个实验中所

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

取个名字真难啊啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值