引言
「语音」作为人工智能的「启蒙钥匙」,不仅率先踏出实验室大门,步入寻常百姓家,也成为了人类与AI初次触电的「桥接技术」。初期,智能语音技术的研究重心落在了语音识别领域,致力于使机器具备理解人类语言的能力。
回溯历史,AT&T贝尔实验室推出的Audrey系统,作为电子计算机领域的先驱,成功辨识了10个英文数字,开启了这一征程。1988年,李开复博士突破性地构建了首个运用隐马尔可夫模型的大词汇量语音识别系统Sphinx。1997年,Dragon NaturallySpeaking的问世,标志着全球首个供消费者使用的连续语音输入系统的商业化。而至2009年,微软Windows 7操作系统内置的语音功能,进一步普及了该技术。
转捩点发生在2011年,iPhone 4S携Siri登场,智能语音技术由此迈入**「互动」**新纪元。同年,谷歌内部启动了Google语音搜索的测试,预告着这一功能即将登上Google的舞台。
从单纯识别到实现互动,这一跨越为人机交互的繁盛奠定了坚实基础。时至今日,语音交互技术已渗透至智能家居、智能驾驶乃至机器人领域,在AI技术迭代的推动下愈发流畅,应用生态呈现多样化。技术层面,各大云服务提供商通过API形式对外开放其AI语音服务,极大促进了开发者基于此的创新应用开发。
近年来,随着大规模预训练模型的兴起,直接在模型层面上的开放与定制化调整日益受到瞩目。开发者能够通过模型训练与微调,深度优化模型性能,进而提升其在特定应用场景下的部署效能,为语音技术的广泛应用开辟了新的路径。
GPT-SoVITS作为一个标志性的语音合成框架,已经为行业树立了高质量语音生成的标准。它通过深度学习模型,尤其是基于WaveNet和Transformer架构的创新,实现了语音自然度和真实感的显著提升,为用户带来了接近真人的听觉体验,在上线后便获得极高热度,仅需提供 5 秒语音样本,便可收获相似度达到 80%~95% 的克隆语音。
然而,随着技术的不断迭代与需求的日益多元化,ChatTTS作为后起之秀,在继承SoVITS等前辈优点的同时,进一步聚焦于对话场景的优化与个性化表达,能实现更加流畅、连贯及富含情感色彩的语音输出,甚至包括语气词、笑声。
下面就让我们从部署开始,深入分析ChatTTS在实际应用中的场景和特点。
腾讯云高性能应用服务 HAI
本次用到的产品是腾讯云高性能应用服务 HAI,这里也稍微介绍一下。
高性能应用服务(Hyper Application Inventor,HAI)是一款面向AI、科学计算的GPU应用服务产品,提供即插即用的澎湃算力与常见环境。助力中小企业及开发者快速部署LLM、AI作画、数据科学等高性能应用,原生集成配套的开发工具与组件,大幅提高应用层的开发生产效率。
其实一开始,我以为这个只是普通的GPU服务器而已,但是看完我才发现,高性能应用服务HAI远不止于此。它不仅仅是一个配备了强大GPU硬件的基础资源平台,更是集成了诸多高级功能和服务的一站式解决方案。它内置了多样化人工智能工具和服务,如深度学习框架、模型训练与优化套件、以及一键式模型部署能力,极大降低了技术门槛,让即便是AI初学者也能迅速上手,将创意转化为现实。
现临近618特惠,领券后即可低价畅享25小时的GPU