pat乙级1091

Pat乙级1091

1091 N-自守数 (15分)

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92^2=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。

输入格式:

输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。

输出格式

对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK^​2的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。

输入样例:

3
92 5 233

输出样例:

3 25392
1 25
No

原题: link.

#include<iostream>
using namespace std;
int n;
int a[20];
int weishu(int n)//计算数字的位数
{
	int i=0;
	while(n!=0)
	{
		i++;
		n/=10;
	}
	return i;
}
int c(int n)//计算10的n次方
{
	int temp=1;
	for(int i=0;i<n;i++)
		temp=10*temp;
	return temp;
}
int zishou(int n)//判断是否是自守数,是返回是N的值,否则返回-1
{
	int temp,i;
	for(i=0;i<10;i++)//题目要求,小于10
	{
		temp=(i*n*n)%c(weishu(n));
		if(temp==n) break;
	}
	if(i==10) return -1;//出循环时,如果i为10.说明10以内没有满足的N值,返回-1
	else return i;//有满足的值,返回N的值
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++)scanf("%d",&a[i]);
	for(int i=0;i<n;i++)
	{
		if(zishou(a[i])==-1) printf("No\n");
		else	printf("%d %d\n",zishou(a[i]),zishou(a[i])*a[i]*a[i]);
	}
} 

本题比较简单,细心模拟即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我定亲手擦亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值