Pat乙级1091
1091 N-自守数 (15分)
如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92^2=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。
输入格式:
输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。
输出格式
对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK^2的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No
原题: link.
#include<iostream>
using namespace std;
int n;
int a[20];
int weishu(int n)//计算数字的位数
{
int i=0;
while(n!=0)
{
i++;
n/=10;
}
return i;
}
int c(int n)//计算10的n次方
{
int temp=1;
for(int i=0;i<n;i++)
temp=10*temp;
return temp;
}
int zishou(int n)//判断是否是自守数,是返回是N的值,否则返回-1
{
int temp,i;
for(i=0;i<10;i++)//题目要求,小于10
{
temp=(i*n*n)%c(weishu(n));
if(temp==n) break;
}
if(i==10) return -1;//出循环时,如果i为10.说明10以内没有满足的N值,返回-1
else return i;//有满足的值,返回N的值
}
int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
for(int i=0;i<n;i++)
{
if(zishou(a[i])==-1) printf("No\n");
else printf("%d %d\n",zishou(a[i]),zishou(a[i])*a[i]*a[i]);
}
}
本题比较简单,细心模拟即可。