青蛙跳台阶 (10 分)
一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级。求该青蛙跳上一个n 级的台阶总共有多少种跳法。
输入格式:
首先输入数字n,代表接下来有n组输入,50>=n>=0,然后每行一个数字,代表台阶数,数字为小于60的整数
输出格式:
对每一组输入,输出青蛙的跳法。
输入样例:
3
1
2
3
输出样例:
1
2
3
该题实际上是一个斐波那契数列.
分析如下:
如果只有一个台阶,青蛙跳一次,如果两个台阶,青蛙有两种跳法,一次跳2阶或跳两次1阶.
当数量大于二是,可以考虑为第一次跳一阶,然后剩余部分的计算交给函数f(n-1),或者第一次跳2阶,那么剩余的部分就是f(n-2),所以当n>2时就是跳f(n-1)+f(n-2)次.
代码如下,注意用数组存放已经算过的数据,避免重复计算.
注释部分是我第一次写的代码,最后一个测试点超时了…
#include<iostream>
#define LL long long
using namespace std;
LL F[500];
LL f(int n){
return F[n]=F[n]?F[n]:f(n-1)+f(n-2);
}
//void dfs(int idx){
// if(sum==step)
// {
// cnt++;
// return;
// }else if(sum>step)return;
// for(int i=1;i<=2;i++){
// sum+=i;
// dfs(i);
// sum-=i;
// }
//}
int main(){
// int n;
// cin>>n;
// while(cin>>step){
// dfs(1);
// cout<<cnt<<endl;
// cnt=0;
// sum=0;
// };
F[1]=1;
F[2]=2;
int n;
cin>>n;
int step;
while(cin>>step){
cout<<f(step)<<endl;
}
}