得分最高的最小轮调(2022-3-9)每日一练

798. 得分最高的最小轮调(2022-3-9)

给定一个数组 A,我们可以将它按一个非负整数 K 进行轮调,这样可以使数组变为 A[K], A[K+1], A{K+2], ... A[A.length - 1], A[0], A[1], ..., A[K-1] 的形式。此后,任何值小于或等于其索引的项都可以记作一分。

例如,如果数组为 [2, 4, 1, 3, 0],我们按 K = 2 进行轮调后,它将变成 [1, 3, 0, 2, 4]。这将记作 3 分,因为 1 > 0 [no points], 3 > 1 [no points], 0 <= 2 [one point], 2 <= 3 [one point], 4 <= 4 [one point]。

在所有可能的轮调中,返回我们所能得到的最高分数对应的轮调索引 K。如果有多个答案,返回满足条件的最小的索引 K。

示例 1:

输入:[2, 3, 1, 4, 0]
输出:3
解释:
下面列出了每个 K 的得分:
K = 0, A = [2,3,1,4,0], score 2
K = 1, A = [3,1,4,0,2], score 3
K = 2, A = [1,4,0,2,3], score 3
K = 3, A = [4,0,2,3,1], score 4
K = 4, A = [0,2,3,1,4], score 3
所以我们应当选择 K = 3,得分最高。

示例 2:

输入:[1, 3, 0, 2, 4]
输出:0
解释:
A 无论怎么变化总是有 3 分。
所以我们将选择最小的 K,即 0。

提示:

  • A 的长度最大为 20000
  • A[i] 的取值范围是 [0, A.length]

解题思路

参考这位大佬的题解

也许是对于困难题的恐惧?自己就是写不出来困难题。而且明知道会超时,还非得写一遍模拟,浪费时间。可能是自己太急躁了,写题效率也太低了,没有正确的思考方式。不过今天这道题倒不是没一点思路,只是再深的就没法思考到了。

本题思路关键在于:nums中每一个元素num都会被[0,n)轮调一遍;因为num的取值依赖于nums的长度。

那么满足要求index<=num是一定会存在的,且相对应的K的范围在一开始也是可以确定的。0<=index<=num就是index满足条件的取值范围,换句话说,K只要在这个范围内都可以使得num对分数做出贡献,再换句话说,这个范围内的K因为num的贡献可以全部加一。

等到遍历完nums,每个num对K的贡献不尽相同,自然就会有最高分值的K出现。

而在对K的分值进行统计时,必不可能让num对应的当前范围的K全部加一,比较耗费时间,我们就可以用到差分的方式统计。

所谓差分,就是在开头加一,末尾减一的方式统计分布情况;当我们遍历K的分值数组时,进入某个加一的范围,统计值就会加一;当出了某个加一的范围时,统计值就减一。

var bestRotation = function(nums) {
    const n = nums.length
    const diff = new Array(n + 1).fill(0)
    for(let i = 0; i < n; i++) {
        if(i >= nums[i]) {
            diff[0]++
            diff[i - nums[i] + 1]--
            diff[i + 1]++
        } else {
            diff[i + 1]++
            diff[i - nums[i] + n + 1]--
        }
    }
    let max = 0,K=-1,sum=0
    for(let i =0;i<diff.length;i++){
       sum += diff[i]
       if(sum > max){
           max = sum
           K = i
       }
   }
    return K
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值