连续整数求和(2022-6-3)每日一练

这篇博客介绍了LeetCode中的一道题目829,主要探讨如何找到连续正整数之和等于给定正整数n的组合。通过贪心算法,分别考虑n为奇数和偶数时的不同情况,分析n减去等差序列首项的差值是否能被序列长度整除来确定组合数量。文章提到了两种解题思路,并推荐了一种更为程序员友好的解决方案。

829. 连续整数求和(2022-6-3)

给定一个正整数 n,返回 连续正整数满足所有数字之和为 n 的组数 。

示例 1:

输入: n = 5
输出: 2
解释: 5 = 2 + 3,共有两组连续整数([5],[2,3])求和后为 5。

示例 2:

输入: n = 9
输出: 3
解释: 9 = 4 + 5 = 2 + 3 + 4

示例 3:

输入: n = 15
输出: 4
解释: 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5

提示:

  • 1 <= n <= 10^9

解题思路

题倒是有点吓人,但是分情况一讨论就好多了,整体是这样的:我们寻找k,保证k(k+1)/2 <= n(等差求和公式,k从1开始就是最小的情况开始);如果k为奇数,直接用n取余,为零则说明可以有k个连续数相加等于n;如果k为偶数,就用2n取余,为零则说明可以有k个连续数相加等于n

至于原理我也不太懂,可以看看官方的证明过程,反正我是没看太懂。

var consecutiveNumbersSum = function(n) {
  let ans = 0, bound = 2 * n
  for(let k = 1; k * ( k + 1) <= bound; k++){
  	if(isOK(n,k)) ans ++
  }
  function isOK(n,k){
	if(k & 1) return n % k === 0
 	else return n % k !==0 && 2 * n % k === 0
  }
  return ans
};

还有一种科学的解题方式,非常之易懂、简明;我认为这种才是程序员该有的解题方式

参考这位大佬的题解

  • 我们要先找「一个」数构成n的情况,此时就是n本身
  • 找「两个」数构成n的情况,此时这两数之间的差值为1,也就是n减去1可以整除2的话,就可以构成n
  • 找「三个」数构成n的情况,此时第一第二相差1,第一第三相差2,也是就是n再减去2可以整除3的话,就说明n可以由「商 + 商 + 1 + 商 + 2」构成。
  • 。。。「四个」「五个」,直到n被减到0
var consecutiveNumbersSum = function(n) {
	let cnt = 0, i = 1
    while (n > 0){
        cnt += (n%i == 0)
        n -= i
        i += 1
    }
    return cnt
}

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/consecutive-numbers-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值