机器学习之验证方式理解

简单交叉验证

 

 方法:将原始数据集随机划分成训练集和验证集两部分。

      比如,将样本按照70%~30%的比例分成两部分,70%的样本用于训练模型;30%的样本用于模型验证。
缺点:(1)数据都只被所用了一次,没有被充分利用
          (2)在验证集上计算出来的最后的评估指标与原始分组有很大关系。

代码

X_train,X_test, y_train, y_test =cross_validation.train_test_split(X,y,test_size, random_state)

k折交叉验证

 为了解决简单交叉验证的不足,提出k-fold交叉验证。 

1、首先,将全部样本训练集划分成k个大小相等的样本子集;
2、依次遍历这k个子集,每次把当前子集作为验证集,其余所有样本作为训练集,进行模型的训练和评估;
3、最后把k次评估指标的平均值作为最终的评估指标。在实际实验中,k通常取10.

举个例子:这里取k=10,如下图所示:

 1)先将原数据集分成10份
(2)每一将其中的一份作为测试集,剩下的9个(k-1)个作为训练集,此时训练集就变成了k * D(D表示每一份中包含的数据样本数)

(3)最后计算k次求得的评价指标的平均值,作为该模型或者假设函数的真实评价分数

代码

from sklearn.model_selection import KFold
import numpy as np
X = np.arange(24).reshape(12,2)
y = np.random.choice([1,2],12,p=[0.4,0.6])
kf = KFold(n_splits=5,shuffle=False)  # 初始化KFold
for train_index , test_index in kf.split(X):  # 调用split方法切分数据
    print('train_index:%s , test_index: %s ' %(train_index,test_index))

 留一法交叉验证(适合小样本数据集)

只从可用的数据集中保留一个数据点,并根据其余数据训练模型。此过程对每个数据点进行迭代,比如有n个数据点,就要重复交叉验证n次。例如下图,一共10个数据,就交叉验证十次

 优点:

适合小样本数据集
利用所有的数据点,因此偏差将很低
缺点:

重复交叉验证过程n次导致更高的执行时间
测试模型有效性的变化大。因为针对一个数据点进行测试,模型的估计值受到数据点的很大影响。如果数据点被证明是一个离群值,它可能导致更大的变化

留p法交叉验证

留一法是保留一个数据点,同样的你也可以保留P个数据点作为验证集,这种方法叫LPOCV(Leave P Out Cross Validation)留p法交叉验证

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值