一道很有意思的逻辑推理题,第一次遇到还是挺难以理解这个题的解题思路的,容易陷入误区,下面是我的个人解析思路:
题目:给一个瞎子52张扑克牌,并告诉他里面恰好有10张牌是正面朝上的。要求这个瞎子把牌分成两堆,使得每堆牌里正面朝上的牌的张数一样多。瞎子应该怎么做?(瞎子摸不出牌是正面或者是反面,但是却可以随意翻动每一张牌)
解析:这里面要注意点是括号里面给出的信息,瞎子看不见但是可以翻动牌面,所以解题是大概率用到翻牌的,留心一下,然后就是两个数值52和10,这个也需要留心一下,最后要注意一个小的点,使得堆牌里正面朝上的牌的张数一样多,并不意味着左右两堆正面朝上的牌都是5张。现在你可以尝试着自己解一下方案。
最终解答:将52张牌分为2堆,一堆10张,另一堆42张,将10张的那一堆全部翻面一次就可以了。
分析:
10张堆 翻起来后 42张堆
向上 向下 向上 向下 向上 向下
1 9 9 1 9 33
2 8 8 2 8 34
3 7 7 3 7 35
........
10 0 0 10 0 42
从这张表我们就可以清楚的get到这道题的关键核心,那就是只有10张牌是正面向上的,所以分成两堆的话,必然正面向上的牌数量和为10,但是此时两边正面向上的牌数并不一定相等(一个是n,一个是10-n)(n自然是1~10的整数),所以我们还需要一个前置条件,就是把其中一个堆的牌数安排为10张,那么这个10张牌堆将所有的牌全部反面(正面向上牌数从n也变成10-n),就必然和另一个42张牌堆的正面向上的牌数量相等。