给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/target-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
package dp;
public class demo494 {
public static void main(String[] args) {
int nums[] ={1,1,1,1,1};
int target = 3;
System.out.println(getTargetNum(nums,3));
}
static int getTargetNum(int[] nums,int target){
int len = nums.length;
int xlen = 2*len+1;
int[][] dp = new int[len][xlen];
for (int i = 0; i <xlen ; i++) {
if (i-len-1==1||i-len-1==-1){
dp[0][i] = 1;
}
}
for (int i = 1; i < len; i++) {
for (int j = 0; j < xlen; j++) {
if (j-len-1<-len){
dp[i][j] = dp[i-1][j+nums[i]];
}else
if (j+len+1>xlen){
dp[i][j] = dp[i-1][j-nums[i]];
}else {
dp[i][j] = dp[i-1][j-nums[i]]+dp[i-1][j+nums[i]];
}
}
}
return dp[len-1][len+target];
}
}
这个是我的思路 没有错误
public static int findTargetSumWays(int[] nums, int s) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
// 绝对值范围超过了sum的绝对值范围则无法得到
if (Math.abs(s) > Math.abs(sum)) return 0;
int len = nums.length;
// - 0 +
int t = sum * 2 + 1;
int[][] dp = new int[len][t];
// 初始化
if (nums[0] == 0) {
dp[0][sum] = 2;
} else {
dp[0][sum + nums[0]] = 1;
dp[0][sum - nums[0]] = 1;
}
for (int i = 1; i < len; i++) {
for (int j = 0; j < t; j++) {
// 边界
int l = (j - nums[i]) >= 0 ? j - nums[i] : 0;
int r = (j + nums[i]) < t ? j + nums[i] : 0;
dp[i][j] = dp[i - 1][l] + dp[i - 1][r];
}
}
return dp[len - 1][sum + s];
}