蓝桥杯 C++ 国赛B组 试题 D: 本质上升序列 题目讲解(理解)

本题总分:10 分
【问题描述】
小蓝特别喜欢单调递增的事物。
在一个字符串中,如果取出若干个字符,将这些字符按照在字符串中的顺序排列后是单调递增的,则成为这个字符串中的一个单调递增子序列。
例如,在字符串 lanqiao 中,如果取出字符 n 和 q,则 nq 组成一个单调递增子序列。类似的单调递增子序列还有 lnq、i、ano 等等。
小蓝发现,有些子序列虽然位置不同,但是字符序列是一样的,例如取第二个字符和最后一个字符可以取到 ao,取最后两个字符也可以取到 ao。小蓝认为他们并没有本质不同。
对于一个字符串,小蓝想知道,本质不同的递增子序列有多少个?
例如,对于字符串 lanqiao,本质不同的递增子序列有 21 个。它们分别是 l、a、n、q、i、o、ln、an、lq、aq、nq、ai、lo、ao、no、io、lnq、anq、lno、ano、aio。
请问对于以下字符串(共 200 个小写英文字母,分四行显示):

tocyjkdzcieoiodfpbgcncsrjbhmugdnojjddhllnofawllbhf
iadgdcdjstemphmnjihecoapdjjrprrqnhgccevdarufmliqij
gihhfgdcmxvicfauachlifhafpdccfseflcdgjncadfclvfmad
vrnaaahahndsikzssoywakgnfjjaihtniptwoulxbaeqkqhfwl

本质不同的递增子序列有多少个?

感觉吧,就是求子序列的变形,子序列求最长,这个求个数好像也差不多

分析问题: 


如果第i个数是本质上升序列,那么算上第i个数的本质上升序列,等于i前面的序列数并且字母小于s[i]的和
考虑特殊情况前面已经出现了相同的字符,那么前面的都不要了,比如:
abcb:
a->a
b->b,ab
c->c,ac,bc,abc
b->b,ab
显然第4个b的上升序列,在第二个b时已经出现了,所以直接去掉

初始化问题:
如果前面出现了相同字母则为0,不同则为1,原理和上同

状态转移方程:
dp[i]+=dp[j],0<=j<i,s[i]!=s[j]

答案:

3616159

代码:

#include<iostream> 
#include<string>
#include<vector>

using namespace std;

int main(){
	string s;
	cin>>s;
	vector <int> dp (s.size(),0);
	dp[0]=1;
	int total=dp[0];
	for(int i=1;i<s.size();i++){
		int q;
		for(q=i-1;q>=0;--q){
			if(s[i]==s[q]){
				break;
			}
		}
		if(q==-1)dp[i]=1;
		for(int j=i-1;j>=0;j--){
			if(s[i]==s[j]){
				break;
			}
			if(s[i]>s[j]){
				dp[i]+=dp[j];
			}
		}
		total+=dp[i];
	}
	cout<<total<<endl;
	return 0;
}

配上结果图: 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值