概率论与数理统计

概率知识点

第一章 和事件相关

概率公式

条件概率公式: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

概率的减法: P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) P(A-B ) = P(A\overline B) = P(A) - P(AB) P(AB)=P(AB)=P(A)P(AB)

A ‾   B ‾ ≠ A B ‾ \overline A \ \overline B \neq \overline{AB} A B=AB
P ( A ‾   B ‾ ) = P ( A ∪ B ‾ ) = 1 − P ( A ∪ B ) = 1 − [ P ( A ) + P ( B ) − P ( A B ) ] P(\overline A\ \overline B) = P(\overline{A \cup B}) = 1-P(A \cup B)=1-[P(A) + P(B) - P(AB)] P(A B)=P(AB)=1P(AB)=1[P(A)+P(B)P(AB)]

伯努利实验

需要成功 k k k 次,一共做了 n n n 次( n > k n > k n>k)才达标的概率
C n − 1 k − 1 p k − 1 ( 1 − p ) n − k p C^{k-1}_{n-1}p^{k-1}(1-p)^{n-k}p Cn1k1pk1(1p)nkp

第二章 常见一维分布及其数字特征

离散型

二项分布

X ∼ B ( n , p ) X \sim B(n,p) XB(n,p)

E X = n p EX = np EX=np

D X = n p ( 1 − p ) DX = np(1-p) DX=np(1p)

泊松分布

X ∼ P ( λ ) X \sim P(\lambda) XP(λ)

P { X = k } = λ k k ! e − λ P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda} P{X=k}=k!λkeλ

E X = λ EX = \lambda EX=λ

D X = λ DX = \lambda DX=λ

几何分布

几何分布的意义:第 k k k 次是事件第一次发生

P { x = k } = ( 1 − p ) k − 1 p P\{x = k\} = (1-p)^{k-1} p P{x=k}=(1p)k1p

E X = 1 p EX = \frac 1p EX=p1

D X = 1 − p p 2 DX = \frac{1-p}{p^2} DX=p21p

连续型

均匀分布

X ∼ U ( a , b ) X \sim U(a,b) XU(a,b)

f ( x ) = 1 b − a f(x) = \frac 1{b-a} f(x)=ba1

F ( X ) = d − c b − a F(X) = \frac{d-c}{b-a} F(X)=badc,其中 a < c < d < b a < c < d < b a<c<d<b

E X = b + a 2 EX = \frac{b+a}2 EX=2b+a

D X = ( b − a ) 2 12 DX = \frac{(b-a)^2}{12} DX=12(ba)2

指数分布

X ∼ E ( λ ) X \sim E(\lambda) XE(λ)

f ( x ) = λ e − λ x f(x) = \lambda e^{-\lambda x} f(x)=λeλx

F ( x ) = 1 − e λ x F(x) = 1-e^{\lambda x} F(x)=1eλx

E X = 1 λ EX = \frac 1{\lambda} EX=λ1

D X = 1 λ 2 DX = \frac 1{\lambda^2} DX=λ21

正态分布

X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2)

f ( x ) = 1 2 π δ e − ( x − μ ) 2 2 δ 2 f(x) = \frac{1}{\sqrt{2\pi}\delta}e^{-\frac{{(x-\mu)}^2}{2 \delta^2}} f(x)=2π δ1e2δ2(xμ)2

F ( x ) = ∫ D f ( x ) d x F(x) = \int_D f(x) dx F(x)=Df(x)dx

E X = μ EX = \mu EX=μ

D X = σ 2 DX = \sigma^2 DX=σ2

二维随机变量

二维均匀分布

X , Y X,Y X,Y 服从 G G G 上的均匀分布
f ( x , y ) = { 1 S G    ( x , y ) ∈ G    0     others f(x,y) = \begin{cases}\frac1{S_G}\ \ (x,y)\in G \\ \\ \ \ 0\ \ \ \ \text{others}\end{cases} f(x,y)=SG1  (x,y)G  0    others

二维正态分布

( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y) \sim N(\mu_1,\mu_2,\sigma^2_1,\sigma^2_2,\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)

其中 ρ ∈ [ − 1 , 1 ] \rho \in [-1,1] ρ[1,1]

特别的, ρ = 0    ⟺    X , Y \rho=0\iff X,Y ρ=0X,Y 相互独立

第三章 求分布函数

Γ \Gamma Γ 函数

Γ \Gamma Γ 函数基本形式如下
Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x \Gamma (\alpha) = \int^{+\infty}_0 x^{\alpha-1} e^{-x} dx Γ(α)=0+xα1exdx
使用如下四条定理计算

  1. Γ ( α + 1 ) = α Γ ( α ) \Gamma (\alpha+1) = \alpha \Gamma(\alpha) Γ(α+1)=αΓ(α)

  2. Γ ( 1 ) = 1 \Gamma (1) = 1 Γ(1)=1

  3. Γ ( 1 2 ) = π \Gamma (\frac 12) = \sqrt{\pi} Γ(21)=π

  4. α ∈ N + \alpha \in N^+ αN+

    P ( α + 1 ) = α ! P(\alpha+1) = \alpha! P(α+1)=α!

泊松积分

I = ∫ 0 + ∞ e − x 2 d x = π I = \int_0^{+\infty} e^{-x^2} dx = \sqrt {\pi} I=0+ex2dx=π

第四章 数字特征

期望 E X EX EX

定义式

连续型随机变量期望的定义式
E [ g ( x ) ] = ∫ G g ( x ) f ( x ) d x E[g(x)] = \int_G g(x) f(x ) dx E[g(x)]=Gg(x)f(x)dx

期望可线性累加

X , Y X,Y X,Y 相互独立

E ( a X + b Y ) = a E X + b E Y E(aX + bY) = aEX + bEY E(aX+bY)=aEX+bEY

方差 D X DX DX

定义式

D X = E ( X 2 ) − ( E X ) 2 DX = E(X^2) - (EX)^2 DX=E(X2)(EX)2

方差的累加

X , Y X,Y X,Y 相互独立

D ( a X + b Y ) = a 2 D X + b 2 D Y D(aX+bY) = a^2 DX + b^2DY D(aX+bY)=a2DX+b2DY

协方差

协方差定义式

C o v ( X , Y ) = E X Y − E X E Y Cov(X,Y) = EXY - EXEY Cov(X,Y)=EXYEXEY

方差与协方差

D ( a X ± b Y ) = a 2 D X + b 2 D Y − 2 a b C o v ( X , Y ) D(aX\pm bY) = a^2DX + b^2DY - 2ab Cov(X,Y) D(aX±bY)=a2DX+b2DY2abCov(X,Y)

协方差的加减运算

C o v ( X 1 ± X 2 , Y ) = C o v ( X 1 , Y ) ± C o v ( X 2 , Y ) Cov(X_1\pm X_2,Y) = Cov(X_1,Y) \pm Cov(X_2,Y) Cov(X1±X2,Y)=Cov(X1,Y)±Cov(X2,Y)

协方差的常用性质
  1. C o v ( X , X ) = D X Cov (X,X) = DX Cov(X,X)=DX
  2. C o v ( Y , X ) = C o v ( X , Y ) Cov(Y,X) = Cov(X,Y) Cov(Y,X)=Cov(X,Y)
  3. C o v ( X , C ) = 0 Cov(X,C) = 0 Cov(X,C)=0
  4. C o v ( a X , b Y ) = a b C o v ( X , Y ) \mathrm{Cov}(aX,bY) = ab\mathrm{Cov}(X,Y) Cov(aX,bY)=abCov(X,Y)

相关系数

定义式

ρ x y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{xy} = \frac{\mathrm{Cov}(X,Y)}{\sqrt{D(X)} \sqrt{D(Y)}} ρxy=D(X) D(Y) Cov(X,Y)

相关系数的性质
  1. ρ X Y \rho_{XY} ρXY 的取值范围: ρ X Y ∈ [ − 1 , 1 ] \rho_{XY} \in[-1,1] ρXY[1,1]

  2. ρ X Y = 0    ⟺    \rho_{XY} = 0 \iff ρXY=0 X , Y X,Y X,Y 不相关

  3. ∣ ρ X Y ∣ = 1    ⟺    P { Y = a X + b } |\rho_{XY}| = 1 \iff P\{Y = aX+b\} ρXY=1P{Y=aX+b}

    ρ X Y = { 1 ,      a > 0 − 1     a < 0 \rho_{XY} = \begin{cases}1,\ \ \ \ a>0 \\-1\ \ \ a < 0\end{cases} ρXY={1,    a>01   a<0

    即所谓正(线性)相关和负(线性)相关

第五章 大数定律

切比雪夫不等式

基本形式

P { ∣ X − μ ∣ ≥ ϵ } ≤ σ 2 ϵ 2 P\{|X - \mu|\geq \epsilon\} \leq \frac{\sigma^2}{\epsilon ^2} P{Xμϵ}ϵ2σ2

其中 μ \mu μ 可用 E X EX EX 代替, σ 2 \sigma^2 σ2 可用 D X DX DX 代替

变形

P { ∣ X − E X ∣ < ϵ } ≥ 1 − D X ϵ 2 P\{|X - EX| < \epsilon \} \geq 1-\frac {DX}{\epsilon ^2} P{XEX<ϵ}1ϵ2DX

大数定律

在样本数量 n → ∞ n \to \infty n 的前提下,样本算术平均 1 n ∑ i = 1 n X i \frac 1n \sum\limits^n_{i = 1} X_i n1i=1nXi 近似(收敛)于期望 E X EX EX,样本方差 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \frac 1n \sum\limits_{i=1}^n (X_i-\overline X)^2 n1i=1n(XiX)2 近似于方差 D X DX DX

中心极限定理

大量随机变量之和,近似的服从正态分布

大量: n ≥ 30 n \geq 30 n30

即数量超过 30 30 30 的样本,可以看作其符合正态分布

第六章 数理统计的概念——使用样本而非总体

样本的估计值:方差和期望

X ‾ = 1 n ∑ i = 1 n X i \overline X = \frac 1n \sum\limits_{i=1}^n X_i X=n1i=1nXi

E X ‾ = E ( X 1 + X 2 + … + x n n ) = μ E \overline X = E(\frac{X_1 + X_2 + …+x_n}{n}) = \mu EX=E(nX1+X2++xn)=μ

D X ‾ = D ( X 1 + X 2 + … + X n n ) = σ 2 n D \overline X = D(\frac{X_1 + X_2 + … + X_n}{n}) = \frac{\sigma^2}n DX=D(nX1+X2++Xn)=nσ2

S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^2 = \frac 1{n-1} \sum\limits^{n}_{i = 1} (X_i- \overline X)^2 S2=n11i=1n(XiX)2

E S 2 = σ 2 ES^2 = \sigma ^2 ES2=σ2

D S 2 = 2 σ 4 n − 1 DS^2 = \frac{2 \sigma^4}{n-1} DS2=n12σ4

样本的三种常见分布

分布特点自由度特性
χ 2 ( n ) \chi ^2(n) χ2(n)样本平方 + … + + … + ++ 样本平方平方的个数 E [ χ 2 ( n ) ] = n D [ χ 2 ( n ) ] = 2 n E[\chi^2(n)] = n \\D[\chi^2(n)] = 2n E[χ2(n)]=nD[χ2(n)]=2n
t ( n ) = X Y n t(n) = \frac X{\sqrt{\frac Yn}} t(n)=nY X 标准正态 ( 卡方 ) / n \frac{\text{标准正态}}{\sqrt{(\text{卡方})}/n} (卡方) /n标准正态   \sqrt{\ }   内平方数对称性
F ( m , n ) = X n Y m F(m,n) = \frac{\frac Xn}{\frac Ym} F(m,n)=mYnX 卡方 卡方 \frac{\text{卡方}}{\text{卡方}} 卡方卡方 m = 分 子 平 方 数 n = 分 子 平 方 数 m=分子平方数 \\n = 分子平方数 m=n= 1 F ( m , n ) = F ( n , m ) \frac 1{F(m,n)} = F(n,m) F(m,n)1=F(n,m)

卡方分布 χ 2 \chi^2 χ2

  1. 独立

  2. 标准化

  3. 自由度为 n n n

    n n n 个样本平方相加( X 1 2 + X 2 2 + … + X n 2 X_1^2 + X^2_2 + …+X_n^2 X12+X22++Xn2),即为 χ 2 ( n ) \chi ^2(n) χ2(n)

χ 2 ( n ) \chi ^2(n) χ2(n) 的数字特征

X ∼ χ 2 ( n ) X \sim \chi^2(n) Xχ2(n),则 E ( χ 2 ) = n , D ( χ 2 ) = 2 n E(\chi ^2)=n,D(\chi^2) = 2n E(χ2)=n,D(χ2)=2n

χ 2 \chi^2 χ2 分布的可加性

χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) \chi_1 ^2 \sim \chi^2(n_1),\chi_2 ^2 \sim \chi^2(n_2) χ12χ2(n1),χ22χ2(n2)

χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) \chi_1 ^2 +\chi_2 ^2 \sim\chi^2(n_1+n_2) χ12+χ22χ2(n1+n2)

t t t 分布

分子: X ∼ N ( 0 , 1 ) X \sim N(0,1) XN(0,1),一个标准正态

分母: Y ∼ χ 2 ( n ) Y \sim \chi ^2(n) Yχ2(n),自由度为 n n n 的卡方分布

T = X Y n T = \frac {X}{\sqrt{\frac Yn} } T=nY X

F F F 分布

X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) X \sim \chi^2(n_1),Y \sim \chi^2(n_2) Xχ2(n1),Yχ2(n2),即分子分别是两个 $\chi^2 $ 分布

F = X / n 1 Y / n 2 F = \frac{X / n_1}{Y/n_2} F=Y/n2X/n1,记作 F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)

n 1 , n 2 n_1,n_2 n1,n2 是第一、第二自由度

t t t 分布的关系

T 2 = χ 2 ( 1 ) / 1 χ 2 ( n ) / n ∼ F ( 1 , n ) T^2 = \frac{\chi^2(1)/1}{\chi^2(n)/n}\sim F(1,n) T2=χ2(n)/nχ2(1)/1F(1,n)

1 F = F ( n 2 , n 1 ) \frac 1F = F(n_2,n_1) F1=F(n2,n1)

F 1 − α ( n 1 , n 2 ) = 1 F α ( n 1 . n 2 ) F_{1-\alpha}(n_1,n_2) = \frac 1{F_{\alpha}(n_1.n_2)} F1α(n1,n2)=Fα(n1.n2)1

有关正态的常用分布

凑正态

X ‾ − μ σ n ∼ N ( 0 , 1 ) \frac{\overline X - \mu }{\frac \sigma{\sqrt n}} \sim N(0,1) n σXμN(0,1)

第七章 参数估计与假设检验

矩估计

E X EX EX (一个关于 X X X θ \theta θ 的函数),又有 X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac 1n\sum\limits^n_{i = 1} X_i X=n1i=1nXi

求得 $\theta = $

最大似然估计

似然函数
离散型随机变量的似然函数

L ( θ ) = ∏ i = 1 n P { X i = X i } L(\theta ) = \prod\limits_{i = 1}^nP\{X_i = X_i\} L(θ)=i=1nP{Xi=Xi}

连续型随机变量的似然函数

L ( θ ) = ∏ i = 1 n f ( X i , θ ) L(\theta) = \prod_{i=1}^nf(X_i,\theta) L(θ)=i=1nf(Xi,θ)

计算似然函数

三个步骤计算似然函数

  1. 写出似然函数 L ( θ ) L(\theta) L(θ)

  2. 似然函数取对数 ln ⁡ ( L ( θ ) ) \ln(L(\theta)) ln(L(θ))

  3. 找驻点,令 d ln ⁡   [ L ( θ ) ] d θ = 0 \frac{d\ln\ [L(\theta)]}{d\theta} = 0 dθdln [L(θ)]=0

    若没有驻点(即 L ( θ ) L(\theta ) L(θ) 单调)

    L ( θ ) L(\theta) L(θ) 单调增,则取 θ ^ = min ⁡ { X 1 , … , X n } \hat \theta = \min\{X_1,…,X_n\} θ^=min{X1,,Xn}

    L ( θ ) L(\theta) L(θ) 单调减,则取 θ ^ = max ⁡ { X 1 , … , X n } \hat \theta = \max \{X_1,…,X_n\} θ^=max{X1,,Xn}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值