数据在内存中的存储(11)

目录

1、数据类型介绍

1、类型的基本归类

1、整形家族:

2、浮点数家族:

3、构造类型(自定义类型):

4、指针类型:

5、空类型:

2、整形在内存中的存储

1、原码、反码、补码

2、大小端介绍

3、练习:

例1:

例2:

例3:

例4:

例5:

例6:

例7:

3、浮点型在内存中的存储

1、浮点数存储规则


1、数据类型介绍

前面已经介绍了基本的内置类型,以及他们所占存储空间的大小。

char           //字符数据类型

short          //短整型

int              //整形

long           //长整型

long long   //更长的整形

float           //单精度浮点数

double       //双精度浮点数

类型的意义:

1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。

2. 如何看待内存空间的视角。

1、类型的基本归类

1、整形家族:

注意:

(1)单写一个char,是signed,还是unsigned,C语言没有明确规定,这取决于编译器的实现。在vs2019中,是signed。

(2)单写一个short、int、long,那就是signed。

2、浮点数家族:

3、构造类型(自定义类型):

4、指针类型:

5、空类型:

注意:void* 修饰的指针,就像一个垃圾桶,可以存任意类型的地址。但是不能直接解引用、加减整数,只能强转为具体类型才行。

2、整形在内存中的存储

1、原码、反码、补码

整数有三种2进制表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位:

1、正数的原码、反码、补码都相同

2、负数:

原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码。


注意:对于整形来说,数据存放内存中其实存放的是补码。

在计算机系统中,数值一律用补码来表示和存储。原因在于:使用补码,可以将符号位和数值位统 一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

将原码转换为补码,1种方式;将补码转换为原码,有2种方式:(1)补码 -1 ,除符号位,其他位按位取反。(2)补码除符号位,其他位按位取反,再+1,也能得到原码。所以上文中,补码与原码相互转换,运算过程是相同的。

2、大小端介绍

大端(存储)模式:指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中;

小端(存储)模式:指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。


为什么有大端和小端:

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32 位的处理器,由于寄存器宽度大于1个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 ,x 的值为 0x1122 ,那么 0x11 为高字节,0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式。

注意:1、内存中存放的是补码。2、整形表达式计算使用的是内存中的补码。3、打印和我们看到的都是原码。

百度笔试题:请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。

#include<stdio.h>
int main()
{
	int a = 1;
	char* p = (char*)&a;
	if (*p == 1)
		printf("小端\n");
	else
		printf("大端\n");
	return 0;
}

 

3、练习:

例1:

答:a=-1、b=-1、c=255。

例2:

答:结果是4294967168。

例3:

答:结果与例2一样。

例4:

例5:

答:死循环。

例6:

答:255。

例7:

答:死循环。

3、浮点型在内存中的存储

1、浮点数存储规则

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。

M表示有效数字,大于等于1,小于2。 2^E表示指数位。

举例来说: 十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

1、对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

2、对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

3、前面说过,1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。

4、IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。

5、指数E从内存中取出还可以再分成三种情况:

(1)E不全为0或不全为1:指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

(2)E全为0:这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。

(3)E全为1:这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值