[读书笔记]双层线性规划:连续变量

5 线性双层规划 连续变量

5.1 介绍

双层规划的主要研究是线性版本,又被称为线性的Stackelberg博弈。在这一章中,我们给出了为了这个事情发展出来的几种最成功的算法,并在可能的时候比较他们的性能。我们从一些最基础的说明和对于问题的理论讨论开始。
对于 x ∈ X ⊂ R n x\in X \subset R^n xXRn, y ∈ Y ⊂ R m y\in Y \subset R^m yYRm, F : X × Y → R 1 F:X\times Y\rightarrow R^1 F:X×YR1,并且 f : X × Y → R 1 f:X\times Y\rightarrow R^1 f:X×YR1, 线性双层规划问题(BLPP)可以写成以下形式:
min ⁡ x ∈ X F ( x , y ) = c 1 x + d 1 y subject to A 1 x + B 1 y ≤ b 1 min ⁡ y ∈ Y f ( x , y ) = c 2 x + d 2 y subject to A 2 x + B 2 y ≤ b 2 \begin{align} \min_{x\in X}\quad &F(x,y)=c_1x+d_1y \tag{5.1a}\\ \text{subject to}\quad & A_1x+B_1y\leq b_1 \tag{5.1b}\\ & \min_{y\in Y}\quad f(x,y)=c_2x+d_2y \tag{5.1c}\\ &\text{subject to}\quad A_2x+B_2y\leq b_2 \tag{5.1d} \end{align} xXminsubject toF(x,y)=c1x+d1yA1x+B1yb1yYminf(x,y)=c2x+d2ysubject toA2x+B2yb2(5.1a)(5.1b)(5.1c)(5.1d)
其中, c 1 , c 2 ∈ R n c_1, c_2\in R^n c1,c2Rn, d 1 , d 2 ∈ R m d_1, d_2\in R^m d1,d2Rm, b 1 ∈ R p b_1\in R^p b1Rp, b 2 ∈ R q b_2\in R^q b2Rq, A 1 ∈ R p × n A_1\in R^{p\times n} A1Rp×n, B 1 ∈ R p × m B_1\in R^{p\times m} B1Rp×m, A 2 ∈ R q × n A_2\in R^{q\times n} A2Rq×n, B 2 ∈ R q × m B_2\in R^{q\times m} B2Rq×m,
集合x和Y给变量施加了额外的限制,如上下界或整数约束。当领导者选择 x x x, 跟随着目标函数的第一项变为一个常数并且可以从问题中移除。在此案例中,使用 f ( y ) f(y) f(y)来替代 f ( x , y ) f(x,y) f(x,y).

决策的顺序形式说明, y y y可以被看作一个 x x x的函数,即 y = y ( x ) y = y(x) y=y(x)。为了方便, 我们会避免显式地写出此依赖项,除非有必要的原因需要这么写。

定义   5.1.1 \textbf{定义 5.1.1} 定义 5.1.1
(a)双层线性规划问题的约束区域:
S ≜ { ( x , y ) : x ∈ X , y ∈ Y , A 1 x + B 1 y ≤ b 1 , A 2 x + B 2 y ≤ b 2 } S\triangleq \{(x,y):x\in X, y\in Y, A_1x+B_1y\leq b_1, A_2x+B_2y\leq b_2\} S{(x,y):xX,yY,A1x+B1yb1,A2x+B2yb2}
(b) 对任意固定的 x ∈ X x\in X xX,跟随者的可行集合:
S ≜ { y ∈ Y : B 2 y ≤ b 2 − A 2 x } S\triangleq \{y \in Y:B_2y\leq b_2-A_2x\} S{yY:B2yb2A2x}
© S在领导者的决策平面上面的投影
S ( X ) ≜ { x ∈ X : ∃ y ∈ Y , A 1 x + B 1 y ≤ b 1 , A 2 x + B 2 y ≤ b 2 } S(X)\triangleq \{x \in X: \exists y\in Y, A_1x+B_1y\leq b_1, A_2x+B_2y\leq b_2\} S(X){xX:yY,A1x+B1yb1,A2x+B2yb2}
(d) 跟随者的理性反应集合
P ( X ) ≜ { y ∈ Y : y ∈ a r g m i n [ f ( x , y ^ ) : y ^ ∈ S ( x ) ] } P(X)\triangleq \{y \in Y: y\in \mathop{argmin}[f(x,\hat{y}): \hat{y}\in S(x)] \} P(X){yY:yargmin[f(x,y^):y^S(x)]}
(e) 可诱导域
I R ≜ { ( x , y ) : ( x , y ) ∈ S , y ∈ P ( x ) } IR \triangleq \{(x,y):(x,y)\in S, y\in P(x)\} IR{(x,y):(x,y)S,yP(x)}
为了确保(5.1)

对于所有领导者采取的决定,跟随者有相应的空间,因此, P ( x ) ≠ ∅ P(x)\neq \varnothing P(x)=.
理性反应集合 P ( x ) P(x) P(x)定义当可诱导域 I R IR IR代表领导者可能优化的集合。因此,考虑到以上的标注,线性双层规划问题可以写作:
min ⁡ { F ( x , y ) : ( x , y ) ∈ I R } \begin{align} \min \{F(x,y):(x,y)\in IR\}\tag{5.2} \end{align} min{F(x,y):(x,y)IR}(5.2)

理论特性

Jeroslow 使用计算机科学中的可满足性首先证明线性 BLPP (5.1) 是 NP 难的。
Bard通过将多面体上一个严格凸的二次函数的最大化问题抽象成为一个线性的max-min问题,提供了一个可替代的证明。后者是(5.1)的一个特殊的形式。
命题5.2.1 线性max-min问题是一个NP-hard问题
推论5.2.1 线性双层规划问题(BLPP)是NP-hard问题
定理5.2.1 诱导集合区域可以等效地写成由S支持超平面组成的分段线性等式约束
推论5.2.2 线性BLPP在由分段线性等式约束组成的可行性区域上最小化F.
推论5.2.3 线性BLPP的解出现在IR的顶点处。
命题 5.2.2 ( x ∗ , y ∗ ) (x^*,y^*) (x,y)为线性BLPP的解的一个必要条件是存在行向量 u ∗ u^* u v ∗ v^* v,使 ( x ∗ , y ∗ , u ∗ , v ∗ ) (x^*,y^*, u^*,v^*) (x,y,u,v)是相应形式的解

  • 30
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值